Java 性能要点:自动装箱/ 拆箱 (Autoboxing / Unboxing)

简介: 本文作者为 Ali Kemal TASCI,最早于2016年4月9日发布于DZONE社区。文章主要介绍通过改进 Java 1.5 就已存在的骨灰级特性大幅度提高应用性能。

【编者按】本文作者为 Ali Kemal TASCI,最早于2016年4月9日发布于DZONE社区。文章主要介绍通过改进 Java 1.5 就已存在的骨灰级特性大幅度提高应用性能

本文系 OneAPM 工程师编译呈现,以下为正文。

如果我告诉你:“只要修改一个字符,下面这段代码的运行速度就能提高5倍。”,你觉得可能么?

long t = System.currentTimeMillis();
Long sum = 0L;for (long i = 0; i < Integer.MAX_VALUE; i++) {
    sum += i;
}
System.out.println("total:" + sum);
System.out.println("processing time: " + (System.currentTimeMillis() - t) + " ms");

输出结果:
总数:2305843005992468481
处理时间:6756 ms

仔细琢磨一下,你可能会想到下面这种执行速度更快的实现方法:

long t = System.currentTimeMillis();//Long sum = 0L;long sum = 0L;for (long i = 0; i < Integer.MAX_VALUE; i++) {
    sum += i;
}
System.out.println("total:" + sum);
System.out.println("processing time: " + (System.currentTimeMillis() - t) + " ms") ;

输出结果:
总数:2305843005992468481
处理时间:1248 ms

其实,自动装箱(Autoboxing)的草率使用是造成速度差异的根本原因,而这一特性从 Java 1.5 开始就已出现了。

在继续解释造成差异的细节之前,让我们仔细回味一下 Java 中的这两个概念:自动装箱(Autoboxing)与 拆箱(Unboxing)。

Java 中的变量分为两种:原始型与引用型。一共存在8个原始型变量以及与各个原始变量对应的8个引用变量(包装类)。

Primitive Types(原始型) Reference Types(Wrapper Class)(引用型,(包装类))
boolean Boolean
byte Byte
char Character
float Float
int Integer
long Long
short Short
double Double

下面的代码会介绍”Autoboxing“与”Unboxing“的用例。在这段代码中,一个类型为”long”的值被添加到类型为”Long“的List集合中。在 Java 1.4 中,为了实现此操作,我们必须将原始变量赋值到合适的引用类中(也即装箱,boxing)。从 Java 1.5 开始,编译器会帮我们完成这一操作。所以,我们不再需要写那么多代码。

List<Long> longList = new ArrayList<>();      
long i = 4;
longList.add( i ); //autoboxing      long j = longList.get( 0 ); //unboxing

从 Java 1.5 开始,编译器会自动将上面的代码段转化成如下代码:

List<Long> longList = new ArrayList<>();      
long i = 4;
longList.add(Long.valueOf( i ) );      
long j = longList.get( 0 ).longValue();

因此,我们也可以说,前文出现的第一段代码段会自动转化为如下代码。所以,导致处理时间较长的原因也就水落石出了:不必要地创建了2147483647个”Long“类型实例。

long t = System.currentTimeMillis();
Long sum = 0L;for (long i = 0; i < Integer.MAX_VALUE; i++) {
sum += new Long(i);
}
System.out.println("total:" + sum);
System.out.println("processing time: " + (System.currentTimeMillis() - t) + " ms") ;

由此可知,想要编写速度更快的 Java 代码,我们也需要考虑”Autoboxing”与”Unboxing”这样的基础概念。

相关资源集锦

Autoboxing and Unboxing
Autoboxing
Efective Java 2nd Edition, J. Bloch

本文转自 OneAPM 官方博客

原文地址:https://dzone.com/articles/java-performance-notes-autoboxing-unboxing

相关文章
|
2月前
|
缓存 算法 Java
Java 实现的局域网管控软件的性能调优
局域网管控软件在企业网络管理中至关重要,但随着网络规模扩大和功能需求增加,其性能可能受影响。文章分析了数据处理效率低下、网络通信延迟和资源占用过高等性能瓶颈,并提出了使用缓存、优化算法、NIO库及合理管理线程池等调优措施,最终通过性能测试验证了优化效果,显著提升了软件性能。
41 1
|
1月前
|
XML Java 数据库连接
性能提升秘籍:如何高效使用Java连接池管理数据库连接
在Java应用中,数据库连接管理至关重要。随着访问量增加,频繁创建和关闭连接会影响性能。为此,Java连接池技术应运而生,如HikariCP。本文通过代码示例介绍如何引入HikariCP依赖、配置连接池参数及使用连接池高效管理数据库连接,提升系统性能。
58 5
|
4月前
|
Kubernetes Cloud Native Java
云原生之旅:从容器到微服务的演进之路Java 内存管理:垃圾收集器与性能调优
【8月更文挑战第30天】在数字化时代的浪潮中,企业如何乘风破浪?云原生技术提供了一个强有力的桨。本文将带你从容器技术的基石出发,探索微服务架构的奥秘,最终实现在云端自由翱翔的梦想。我们将一起见证代码如何转化为业务的翅膀,让你的应用在云海中高飞。
|
4月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
129 1
|
1月前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
31 4
|
1月前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
34 1
|
2月前
|
存储 缓存 算法
提高 Java 数组性能的方法
【10月更文挑战第19天】深入探讨了提高 Java 数组性能的多种方法。通过合理运用这些策略,我们可以在处理数组时获得更好的性能表现,提升程序的运行效率。
40 2
|
3月前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
477 37
|
2月前
|
缓存 Java 数据库连接
使用 NCache 将 Java 微服务扩展到极致性能
使用 NCache 将 Java 微服务扩展到极致性能
31 8
|
3月前
|
缓存 Java 应用服务中间件
Java虚拟线程探究与性能解析
本文主要介绍了阿里云在Java-虚拟-线程任务中的新进展和技术细节。
121 23