Scalaz(13)- Monad:Writer - some kind of logger

简介:

 通过前面的几篇讨论我们了解到F[T]就是FP中运算的表达形式(representation of computation)。在这里F[]不仅仅是一种高阶类型,它还代表了一种运算协议(computation protocol)或者称为运算模型好点,如IO[T],Option[T]。运算模型规范了运算值T的运算方式。而Monad是一种特殊的FP运算模型M[A],它是一种持续运算模式。通过flatMap作为链条把前后两个运算连接起来。多个flatMap同时作用可以形成一个程序运行链。我们可以在flatMap函数实现中增加一些附加作用,如维护状态值(state value)、跟踪记录(log)等。 

  在上一篇讨论中我们用一个Logger的实现例子示范了如何在flatMap函数实现过程中增加附加作用;一个跟踪功能(logging),我们在F[T]运算结构中增加了一个String类型值作为跟踪记录(log)。在本篇讨论中我们首先会对上篇的Logger例子进行一些log类型的概括,设计一个新的Logger结构:


case class Logger[LOG, A](log: LOG, value: A) {
    def map[B](f: A => B): Logger[LOG,B] = Logger(log, f(value))
    def flatMap[B](f: A => Logger[LOG,B])(implicit M: Monoid[LOG]): Logger[LOG,B] = {
        val nxLogger = f(value)
        Logger(log |+| nxLogger.log, nxLogger.value)
    }
      
}

以上Logger对LOG类型进行了概括:任何拥有Monoid实例的类型都可以,能够支持Monoid |+|操作符号。这点从flatMap函数的实现可以证实。

当然我们必须获取Logger的Monad实例才能使用for-comprehension。不过由于Logger有两个类型参数Logger[LOG,A],我们必须用type lambda把LOG类型固定下来,让Monad运算只针对A类型值:


1 object Logger {
2     implicit def toLogger[LOG](implicit M: Monoid[LOG]) = new Monad[({type L[x] = Logger[LOG,x]})#L] {
3         def point[A](a: => A) = Logger(M.zero,a)
4         def bind[A,B](la: Logger[LOG,A])(f: A => Logger[LOG,B]): Logger[LOG,B] = la flatMap f
5     }
6 }

有了Monad实例我们可以使用for-comprehension:


def enterInt(x: Int): Logger[String, Int] = Logger("Entered Int:"+x, x)
                                                  //> enterInt: (x: Int)Exercises.logger.Logger[String,Int]
def enterStr(x: String): Logger[String, String] = Logger("Entered String:"+x, x)
                                                  //> enterStr: (x: String)Exercises.logger.Logger[String,String]

for {
    a <- enterInt(3)
    b <- enterInt(4)
    c <- enterStr("Result:")
} yield c + (a * b).shows                         //> res0: Exercises.logger.Logger[String,String] = Logger(Entered Int:3Entered I
                                                  //| nt:4Entered String:Result:,Result:12)

不过必须对每个类型定义操作函数,用起来挺不方便的。我们可以为任何类型注入操作方法:


1 final class LoggerOps[A](a: A) {
2     def applyLog[LOG](log: LOG): Logger[LOG,A] = Logger(log,a)
3 }
4 implicit def toLoggerOps[A](a: A) = new LoggerOps[A](a)
5                                                   //> toLoggerOps: [A](a: A)Exercises.logger.LoggerOps[A]

我们为任意类型A注入了applyLog方法:


3.applyLog("Int three")                           //> res1: Exercises.logger.Logger[String,Int] = Logger(Int three,3)
"hi" applyLog "say hi"                            //> res2: Exercises.logger.Logger[String,String] = Logger(say hi,hi)
for {
    a <- 3 applyLog "Entered Int 3"
    b <- 4 applyLog "Entered Int 4"
    c <- "Result:" applyLog "Entered String 'Result'"
} yield c + (a * b).shows                         //> res3: Exercises.logger.Logger[String,String] = Logger(Entered Int 3Entered 
                                                  //| Int 4Entered String 'Result',Result:12)

用aplyLog这样操作方便多了。由于LOG可以是任何拥有Monoid实例的类型。除了String类型之外,我们还可以用Vector或List这样的高阶类型:


for {
    a <- 3 applyLog Vector("Entered Int 3")
    b <- 4 applyLog Vector("Entered Int 4")
    c <- "Result:" applyLog Vector("Entered String 'Result'")
} yield c + (a * b).shows                         //> res4: Exercises.logger.Logger[scala.collection.immutable.Vector[String],Str
                                                  //| ing] = Logger(Vector(Entered Int 3, Entered Int 4, Entered String 'Result')
                                                  //| ,Result:12)

一般来讲,用Vector效率更高,在下面我们会证实这点。

既然A可以是任何类型,那么高阶类型如Option[T]又怎样呢:


1 for {
2     oa <- 3.some applyLog Vector("Entered Some(3)")
3     ob <- 4.some applyLog Vector("Entered Some(4)")
4 } yield ^(oa,ob){_ * _}                           //> res0: Exercises.logger.Logger[scala.collection.immutable.Vector[String],Opti
5                                                   //| on[Int]] = Logger(Vector(Entered Some(3), Entered Some(4)),Some(12))

 一样可以使用。注意oa,ob是Option类型所以必须使用^(oa,ob){...}来结合它们。

我们再来看看Logger的典型应用:一个gcd(greatest common denominator)算法例子:


def gcd(x: Int, y: Int): Logger[Vector[String], Int] = {
    if (y == 0 ) for {
        _ <- x applyLog Vector("Finished at " + x)
    } yield x
    else
      x applyLog Vector(x.shows + " mod " + y.shows + " = " + (x % y).shows) >>= {_ => gcd(y, x % y) }
      
}                                                 //> gcd: (x: Int, y: Int)Exercises.logger.Logger[Vector[String],Int]
gcd(18,6)                                         //> res5: Exercises.logger.Logger[Vector[String],Int] = Logger(Vector(18 mod 6 
                                                  //| = 0, Finished at 6),6)
gcd(8,3)                                          //> res6: Exercises.logger.Logger[Vector[String],Int] = Logger(Vector(8 mod 3 =
                                                  //|  2, 3 mod 2 = 1, 2 mod 1 = 0, Finished at 1),1)

注意 >>= 符号的使用,显现了Logger的Monad实例特性。

实际上scalar提供了Writer数据结构,它是WriterT类型的一个特例:


1 type Writer[+W, +A] = WriterT[Id, W, A]

我们再看看WriterT:scalaz/WriterT.scala


final case class WriterT[F[_], W, A](run: F[(W, A)]) { self =>
...

WriterT在运算值A之外增加了状态值W,形成一个对值(paired value)。这是一种典型的FP状态维护模式。不过WriterT的这个(W,A)是在运算模型F[]内的。这样可以实现更高层次的概括,为这种状态维护的运算增加多一层运算协议(F[])影响。我们看到Writer运算是WriterT运算模式的一个特例,它直接计算运算值,不需要F[]影响,所以Writer的F[]采用了Id,因为Id[A] = A。我们看看WriterT是如何通过flatMap来实现状态维护的:scalaz/WriterT.scala:


def flatMap[B](f: A => WriterT[F, W, B])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    flatMapF(f.andThen(_.run))

  def flatMapF[B](f: A => F[(W, B)])(implicit F: Bind[F], s: Semigroup[W]): WriterT[F, W, B] =
    writerT(F.bind(run){wa =>
      val z = f(wa._2)
      F.map(z)(wb => (s.append(wa._1, wb._1), wb._2))
    })

在flatMapF函数里对(W,A)的W进行了Monoid append操作。

实际上Writer可以说是一种附加的数据结构,它在运算模型F[A]内增加了一个状态值W形成了F(W,A)这种形式。当我们为任何类型A提供注入方法来构建这个Writer结构后,任意类型的运算都可以使用Writer来实现在运算过程中增加附加作用如维护状态、logging等等。我们看看scalaz/Syntax/WriterOps.scala:


package scalaz
package syntax

final class WriterOps[A](self: A) {
  def set[W](w: W): Writer[W, A] = WriterT.writer(w -> self)

  def tell: Writer[A, Unit] = WriterT.tell(self)
}

trait ToWriterOps {
  implicit def ToWriterOps[A](a: A) = new WriterOps(a)
}

存粹是方法注入。现在任何类型A都可以使用set和tell来构建Writer类型了:


3 set Vector("Entered Int 3")                     //> res2: scalaz.Writer[scala.collection.immutable.Vector[String],Int] = WriterT
                                                  //| ((Vector(Entered Int 3),3))
"hi" set Vector("say hi")                         //> res3: scalaz.Writer[scala.collection.immutable.Vector[String],String] = Writ
                                                  //| erT((Vector(say hi),hi))
List(1,2,3) set Vector("list 123")                //> res4: scalaz.Writer[scala.collection.immutable.Vector[String],List[Int]] = W
                                                  //| riterT((Vector(list 123),List(1, 2, 3)))
3.some set List("some 3")                         //> res5: scalaz.Writer[List[String],Option[Int]] = WriterT((List(some 3),Some(3
                                                  //| )))
Vector("just say hi").tell                        //> res6: scalaz.Writer[scala.collection.immutable.Vector[String],Unit] = Writer
                                                  //| T((Vector(just say hi),()))

用Writer运算上面Logger的例子:


1 for {
2     a <- 3 set "Entered Int 3 "
3     b <- 4 set "Entered Int 4 "
4     c <- "Result:" set "Entered String 'Result'"
5 } yield c + (a * b).shows                         //> res7: scalaz.WriterT[scalaz.Id.Id,String,String] = WriterT((Entered Int 3 En
6                                                   //| tered Int 4 Entered String 'Result',Result:12))

如果A是高阶类型如List[T]的话,还能使用吗:


for {
 la <- List(1,2,3) set Vector("Entered List(1,2,3)")
 lb <- List(4,5) set Vector("Entered List(4,5)")
 lc <- List(6) set Vector("Entered List(6)")
} yield (la |@| lb |@| lc) {_ + _ + _}            //> res1: scalaz.WriterT[scalaz.Id.Id,scala.collection.immutable.Vector[String]
                                                  //| ,List[Int]] = WriterT((Vector(Entered List(1,2,3), Entered List(4,5), Enter
                                                  //| ed List(6)),List(11, 12, 12, 13, 13, 14)))

的确没有问题。

那个gcd例子还是挺有代表性的,我们用Writer来运算和跟踪gcd运算:


def gcd(a: Int, b: Int): Writer[Vector[String],Int] =
  if (b == 0 ) for {
      _ <- Vector("Finished at "+a.shows).tell
  } yield a
  else
   Vector(a.shows+" mod "+b.shows+" = "+(a % b).shows).tell >>= {_ => gcd(b,a % b)}
                                                  //> gcd: (a: Int, b: Int)scalaz.Writer[Vector[String],Int]

gcd(8,3)                                          //> res8: scalaz.Writer[Vector[String],Int] = WriterT((Vector(8 mod 3 = 2, 3 mo
                                                  //| d 2 = 1, 2 mod 1 = 0, Finished at 1),1))
gcd(16,4)                                         //> res9: scalaz.Writer[Vector[String],Int] = WriterT((Vector(16 mod 4 = 0, Fin
                                                  //| ished at 4),4))

在维护跟踪记录(logging)时使用Vector会比List更高效。我们来证明一下:


def listLogCount(c: Int): Writer[List[String],Unit] = {
  @annotation.tailrec
  def countDown(c: Int, w: Writer[List[String],Unit]): Writer[List[String],Unit] = c match {
      case 0 => w >>= {_ => List("0").tell }
      case x => countDown(x-1, w >>= {_ => List(x.shows).tell })
  }
  val t0 = System.currentTimeMillis
  val r = countDown(c,List[String]().tell)
  val t1 = System.currentTimeMillis
  r >>= {_ => List((t1 -t0).shows+"msec").tell }
}                                                 //> listLogCount: (c: Int)scalaz.Writer[List[String],Unit]
def vectorLogCount(c: Int): Writer[Vector[String],Unit] = {
  @annotation.tailrec
  def countDown(c: Int, w: Writer[Vector[String],Unit]): Writer[Vector[String],Unit] = c match {
      case 0 => w >>= {_ => Vector("0").tell }
      case x => countDown(x-1, w >>= {_ => Vector(x.shows).tell })
  }
  val t0 = System.currentTimeMillis
  val r = countDown(c,Vector[String]().tell)
  val t1 = System.currentTimeMillis
  r >>= {_ => Vector((t1 -t0).shows+"msec").tell }
}                                                 //> vectorLogCount: (c: Int)scalaz.Writer[Vector[String],Unit]

(listLogCount(10000).run)._1.last                 //> res10: String = 361msec
(vectorLogCount(10000).run)._1.last               //> res11: String = 49msec

看,listLogCount(10000)用了361msec

vectorLogCount(10000)只用了49msec,快了8,9倍呢。


相关文章
|
存储 Java 编译器
【Java异常】Variable used in lambda expression should be final or effectively final
【Java异常】Variable used in lambda expression should be final or effectively final
265 0
【Java异常】Variable used in lambda expression should be final or effectively final
|
监控 前端开发 Java
Caused by: org.yaml.snakeyaml.scanner.ScannerException: while scanning an alias in ‘reader‘, line 5
Caused by: org.yaml.snakeyaml.scanner.ScannerException: while scanning an alias in ‘reader‘, line 5
173 0
java中出现Syntax error, annotations are only available if source level is 1.5 or greater
java中出现Syntax error, annotations are only available if source level is 1.5 or greater
java中出现Syntax error, annotations are only available if source level is 1.5 or greater
|
JSON Java Scala
Scala中使用JSON.toJSONString报错:ambiguous reference to overloaded definition
问题描述: [ERROR] /Users/jack/book/lightsword/src/main/scala/com/springboot/in/action/filter/LoginFilter.
2315 0
|
Java
Java - Lambda Error:Variable used in lambda expression should be final or effectively final
Java - Lambda Error:Variable used in lambda expression should be final or effectively final
1610 0
Java - Lambda Error:Variable used in lambda expression should be final or effectively final
|
JSON Java Scala
13.10 Scala中使用JSON.toJSONString报错:ambiguous reference to overloaded definition
13.10 Scala中使用JSON.toJSONString报错:ambiguous reference to overloaded definition 问题描述: [ERROR] /Users/jack/book/lightsword/src/...
1243 0

热门文章

最新文章