Scalaz(18)- Monad: ReaderWriterState-可以是一种简单的编程语言

简介:

 说道FP,我们马上会联想到Monad。我们说过Monad的代表函数flatMap可以把两个运算F[A],F[B]连续起来,这样就可以从程序的意义上形成一种串型的流程(workflow)。更直白的讲法是:任何类型只要实现了flatMap就可以用for-comprehension, for{...}yield。在这个for{...}里我们可以好像OOP一样编写程序。这个for就是一种运算模式,它规范了在for{...}里指令的行为。我们正从OOP风格走入FP编程模式,希望有个最基本的FP编程模式使我们能够沿用OOP编程风格的语法和思维。Monad应该就是最合适的泛函数据类型了。我们先从最基本的开始:假如我们有一段行令程序:


/*
val a = e1
val b = e2(a)
val c = e3(a,b)
val d = e2(c)
*/

通过这些函数e1,e2,e3最后计算出d值。如果是用FP风格来编这段程序的话,首先我们必须把函数的结果d放入F[d]的F里。F就是上面所说的运算模式,在这里可以用大家熟悉的context(上下文)来表示。F必须是个Monad,F[]相当于for{...}yield。我们先试试用Id,虽然Id[A]对A不做任何处理,直接返回,好像没什么意义,但这种类型具备了map和flatMap,应该可以用for-comprehension:


import scalaz._
import Scalaz._
def e1:Id[Int] = 10                               //> e1: => scalaz.Scalaz.Id[Int]
def e2(a: Int): Id[Int] = a + 1                   //> e2: (a: Int)scalaz.Scalaz.Id[Int]
def e3(a: Int, b: Int): Id[Int] = a + b           //> e3: (a: Int, b: Int)scalaz.Scalaz.Id[Int]
for {
    a <- e1
    b <- e2(a)
    c <- e3(a,b)
    d <- e2(c)
} yield d                                         //> res0: scalaz.Scalaz.Id[Int] = 22

可以看到,在for-loop里就是OOP的行令程序。不过如果觉着这个Id没什么意义,可以试试Option看:


import scalaz._
import Scalaz._
def e1:Option[Int] = 10.some                      //> e1: => Option[Int]
def e2(a: Int): Option[Int] = (a + 1).some        //> e2: (a: Int)Option[Int]
def e3(a: Int, b: Int): Option[Int] = (a + b).some//> e3: (a: Int, b: Int)Option[Int]
for {
    a <- e1
    b <- e2(a)
    c <- e3(a,b)
    d <- e2(c)
} yield d                                         //> res0: Option[Int] = Some(22)

看,虽然换了个壳子(context), 但for-loop里的程序没有变化。换一句话讲就是for-loop里的程序根本不理会包裹的context。

Reader也是一种Monad,用它又怎样呢:


import scalaz._
import Scalaz._
def e1:Reader[Int,Int] = Reader[Int,Int](a => a)  //> e1: => scalaz.Reader[Int,Int]
def e2(a: Int): Reader[Int,Int] = Reader[Int,Int](_ => a + 1)
                                                  //> e2: (a: Int)scalaz.Reader[Int,Int]
def e3(a: Int, b: Int): Reader[Int, Int] = Reader[Int,Int](_ => a+b)
                                                  //> e3: (a: Int, b: Int)scalaz.Reader[Int,Int]
val prg = for {
    a <- e1
    b <- e2(a)
    c <- e3(a,b)
    d <- e2(c)
} yield d                                         //> prg  : scalaz.Kleisli[scalaz.Id.Id,Int,Int] = Kleisli(<function1>)
prg.run(10)                                       //> res0: scalaz.Id.Id[Int] = 22

虽然在语法上有些蹩脚,但还是证明了for-loop里的程序是不理会外面context的。那么我们可不可以说这个prg就是一个简单的FP编程语言。它把运算结果放在context里,直至运行了某种interpreter才能取得实际的运算值(用run(10)得到22)。当然,一段程序,它的运算行为受制于单一种类型的context可能有些弱了。如果需要获得一种可用的FP编程语言,我们可能还是要探讨如何把单一类型context组合成多类型混合的context。

我们发现在scalaz里有些type class的名称是以T结束的如:ReaderT,WriterT,StateT等等。这个T指的是变形器Transformer,意思是用它可以堆砌(stacking)context。看看StateT,简单定义应该是这样的: 


case class StateT[F[_],S,A](run: S => F[(S,A)])

我们可以把F类堆砌在State上。实践证明如果这个F实现了flatMap,那么堆砌成的类型也能实现flatMap。好,scalaz的Option是实现了flatMap的,那么能不能把它和State堆砌在一起呢?堆砌而成的context会有什么效果呢?我们先看看单一Option和State作为一种context的效果:


for {
  a <- 3.some
  b <- (None: Option[Int])
  c <- 4.some
} yield c                                         //> res1: Option[Int] = None
val statePrg = for {
  a <- get[Int]
  b <- State[Int,Int](s => (s, s + a))
  _ <- put(9)
} yield b                                         //> statePrg  : scalaz.IndexedStateT[scalaz.Id.Id,Int,Int,Int] = scalaz.IndexedS
                                                  //| tateT$$anon$10@15ff3e9e
statePrg.run(3)                                   //> res2: scalaz.Id.Id[(Int, Int)] = (9,6)

依我来看,Option主要效果是在遇到None值时立即退出。而State的主要作用是在运算同时可以维护一个状态。那么如果把Option和State叠加起来就会同时具备这两种类型的特点了吧?也就是既能维护状态又能在遇到None值时立即终止运算退出了。首先验证一下用Option的flatMap来实现叠加context的flatMap:


case class OptionState[S,A](run: S => Option[(S,A)]) {
   def map[B](f: A => B): OptionState[S,B] =
    OptionState { 
       s => run(s) map { case (s1,a1) => (s1,f(a1)) }
    }
   def flatMap[B](f: A => OptionState[S,B]): OptionState[S,B] =
    OptionState { 
       s => run(s) flatMap { case (s1,a1) => f(a1).run(s1) }
    }
 }

是的,我们可以用Option的map和flatMap来实现OptionState的map和flatMap。当然,如果我们想在一个for-comprehension里同时使用Option和State就必须把它们升格成OptionState类型:


 def liftOption[S,A](oa: Option[A]): OptionState[S,A] = oa match {
  case Some(a) => OptionState {s => (s,a).some }
  case None => OptionState {_ => none}
 }
 def liftState[S,A](sa: State[S,A]): OptionState[S,A] =
    OptionState {s => sa(s).some}

现在试试用叠加效果的for-comprehension:


val osprg: OptionState[Int,Int] = for {
   a <- liftOption(3.some)
   b <- liftState(put(a))
   c <- liftState(get[Int])
   d <- liftState(State[Int,Int](s => (s+c, s+a)))
 } yield c                                        //> osprg  : Exercises.rws.OptionState[Int,Int] = OptionState(<function1>)
 osprg.run(2)                                     //> res3: Option[(Int, Int)] = Some((6,3))
 val osprg1: OptionState[Int,Int] = for {
   a <- liftOption(3.some)
   b <- liftState(put(a))
   _ <- liftOption((None: Option[Int]))
   c <- liftState(get[Int])
   d <- liftState(State[Int,Int](s => (s+c, s+a)))
 } yield c                                        //> osprg1  : Exercises.rws.OptionState[Int,Int] = OptionState(<function1>)
 osprg1.run(2)                                    //> res4: Option[(Int, Int)] = None

看,既可以维护状态又具备None处理机制。

好了,scalaz里有个ReaderWriterState这么个type class,就是一个Reader+Writer+State堆砌的Monad。相信scalaz特别提供了这么个type class应该有它的用意。我的猜想是这个Monad是个功能比较完整的组合Monad。作为for-comprehension的context应该能提供比较全面的效果。从字意上解释就是在由它形成的Monadic编程语言里可以同时提供运算(compute)、跟踪(logging)和状态维护功能。它的基础类型是IndexedReaderWriterStateT:scalaz/package.scala


type ReaderWriterStateT[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]
  object ReaderWriterStateT extends ReaderWriterStateTInstances with ReaderWriterStateTFunctions {
    def apply[F[_], R, W, S, A](f: (R, S) => F[(W, A, S)]): ReaderWriterStateT[F, R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A] { (r: R, s: S) => f(r, s) }
  }
  type IndexedReaderWriterState[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[Id, R, W, S1, S2, A]
  object IndexedReaderWriterState extends ReaderWriterStateTInstances with ReaderWriterStateTFunctions {
    def apply[R, W, S1, S2, A](f: (R, S1) => (W, A, S2)): IndexedReaderWriterState[R, W, S1, S2, A] = IndexedReaderWriterStateT[Id, R, W, S1, S2, A] { (r: R, s: S1) => f(r, s) }
  }
  type ReaderWriterState[-R, W, S, A] = ReaderWriterStateT[Id, R, W, S, A]
  object ReaderWriterState extends ReaderWriterStateTInstances with ReaderWriterStateTFunctions {
    def apply[R, W, S, A](f: (R, S) => (W, A, S)): ReaderWriterState[R, W, S, A] = IndexedReaderWriterStateT[Id, R, W, S, S, A] { (r: R, s: S) => f(r, s) }
  }
  type IRWST[F[_], -R, W, -S1, S2, A] = IndexedReaderWriterStateT[F, R, W, S1, S2, A]
  val IRWST: IndexedReaderWriterStateT.type = IndexedReaderWriterStateT
  type IRWS[-R, W, -S1, S2, A] = IndexedReaderWriterState[R, W, S1, S2, A]
  val IRWS: IndexedReaderWriterState.type = IndexedReaderWriterState
  type RWST[F[_], -R, W, S, A] = ReaderWriterStateT[F, R, W, S, A]
  val RWST: ReaderWriterStateT.type = ReaderWriterStateT
  type RWS[-R, W, S, A] = ReaderWriterState[R, W, S, A]
  val RWS: ReaderWriterState.type = ReaderWriterState

如果把Reader,Writer,State款式分开来对比分析的话:


case class Reader[R, A](f: R => A)     //传入R,返回A后不理会R
case class Writer[W, A](w: (W, A))     //直接返回W,A
case class State[S, A](f: S => (A, S)) //传入S, 返回A和S

那么把以上三个结合起来后它的款式应该是这样的了吧:


case class ReaderWriterState[R, W, S, A](
          run: (R, S) => (W, A, S)  //传入R,S 返回W,A,S
) 
case class ReaderWriterStateT[F[_],R, W, S, A](
          run: (R, S) => F[(W, A, S)]  //传入R,S 返回W,A,S。只是包在了F内
) 

传入的和返回的类型是匹配的。在scalaz里是这样定义的:scalaz/ReaderWriterStateT.scala


/** A monad transformer stack yielding `(R, S1) => F[(W, A, S2)]`. */
sealed abstract class IndexedReaderWriterStateT[F[_], -R, W, -S1, S2, A] {
  self =>
  def run(r: R, s: S1): F[(W, A, S2)]

  /** Discards the writer component. */
  def state(r: R)(implicit F: Functor[F]): IndexedStateT[F, S1, S2, A] =
    IndexedStateT((s: S1) => F.map(run(r, s)) {
      case (w, a, s1) => (s1, a)
    })

  /** Calls `run` using `Monoid[S].zero` as the initial state */
  def runZero[S <: S1](r: R)(implicit S: Monoid[S]): F[(W, A, S2)] =
    run(r, S.zero)

  /** Run, discard the final state, and return the final value in the context of `F` */
  def eval(r: R, s: S1)(implicit F: Functor[F]): F[(W, A)] =
    F.map(run(r,s)) { case (w,a,s2) => (w,a) }

  /** Calls `eval` using `Monoid[S].zero` as the initial state */
  def evalZero[S <: S1](r:R)(implicit F: Functor[F], S: Monoid[S]): F[(W,A)] =
    eval(r,S.zero)

  /** Run, discard the final value, and return the final state in the context of `F` */
  def exec(r: R, s: S1)(implicit F: Functor[F]): F[(W,S2)] =
    F.map(run(r,s)){case (w,a,s2) => (w,s2)}

  /** Calls `exec` using `Monoid[S].zero` as the initial state */
  def execZero[S <: S1](r:R)(implicit F: Functor[F], S: Monoid[S]): F[(W,S2)] =
    exec(r,S.zero)
...

我们看到IndexedReaderWriterStateT已经实现了很多IndexedStateT的运算方法如:eval,exec等。看看它的map和flatMap是怎么实现的:


def map[B](f: A => B)(implicit F: Functor[F]): IndexedStateT[F, S1, S2, B] = IndexedStateT(s => F.map(apply(s)) {
    case (s1, a) => (s1, f(a))
})
def flatMap[S3, B](f: A => IndexedStateT[F, S2, S3, B])(implicit F: Bind[F]): IndexedStateT[F, S1, S3, B] = IndexedStateT(s => F.bind(apply(s)) {
    case (s1, a) => f(a)(s1)
})

与我们前面所做的OptionState例子一样:如果F能实现map和flatMap则IndexedReaderWriterStateT就能实现map和flatMap。为了省却在for-loop里每行命令都使用lift进行类型升格,IndexedReaderWriterStateT重新实现了大部分操作函数:


private trait ReaderWriterStateTMonad[F[_], R, W, S]
  extends MonadReader[({type λ[r, α]=ReaderWriterStateT[F, r, W, S, α]})#λ, R]
  with MonadState[({type f[s, α] = ReaderWriterStateT[F, R, W, s, α]})#f, S]
  with MonadListen[({type f[w, α] = ReaderWriterStateT[F, R, w, S, α]})#f, W]
  with IndexedReaderWriterStateTFunctor[F, R, W, S, S] {
  implicit def F: Monad[F]
  implicit def W: Monoid[W]

  def bind[A, B](fa: ReaderWriterStateT[F, R, W, S, A])(f: A => ReaderWriterStateT[F, R, W, S, B]): ReaderWriterStateT[F, R, W, S, B] = fa flatMap f
  def point[A](a: => A): ReaderWriterStateT[F, R, W, S, A] =
    ReaderWriterStateT((_, s) => F.point((W.zero, a, s)))
  def ask: ReaderWriterStateT[F, R, W, S, R] =
    ReaderWriterStateT((r, s) => F.point((W.zero, r, s)))
  def local[A](f: R => R)(fa: ReaderWriterStateT[F, R, W, S, A]): ReaderWriterStateT[F, R, W, S, A] =
    ReaderWriterStateT((r, s) => fa.run(f(r), s))
  override def scope[A](k: R)(fa: ReaderWriterStateT[F, R, W, S, A]): ReaderWriterStateT[F, R, W, S, A] =
    ReaderWriterStateT((_, s) => fa.run(k, s))
  override def asks[A](f: R => A): ReaderWriterStateT[F, R, W, S, A] =
    ReaderWriterStateT((r, s) => F.point((W.zero, f(r), s)))
  def init: ReaderWriterStateT[F, R, W, S, S] =
    ReaderWriterStateT((_, s) => F.point((W.zero, s, s)))
  def get = init
  def put(s: S): ReaderWriterStateT[F, R, W, S, Unit] =
    ReaderWriterStateT((r, _) => F.point((W.zero, (), s)))
  override def modify(f: S => S): ReaderWriterStateT[F, R, W, S, Unit] =
    ReaderWriterStateT((r, s) => F.point((W.zero, (), f(s))))
  override def gets[A](f: S => A): ReaderWriterStateT[F, R, W, S, A] =
    ReaderWriterStateT((_, s) => F.point((W.zero, f(s), s)))
  def writer[A](w: W, v: A): ReaderWriterStateT[F, R, W, S, A] =
    ReaderWriterStateT((_, s) => F.point((w, v, s)))
  override def tell(w: W): ReaderWriterStateT[F, R, W, S, Unit] =
    ReaderWriterStateT((_, s) => F.point((w, (), s)))
  def listen[A](ma: ReaderWriterStateT[F, R, W, S, A]): ReaderWriterStateT[F, R, W, S, (A, W)] =
    ReaderWriterStateT((r, s) => F.map(ma.run(r, s)) { case (w, a, s1) => (w, (a, w), s1)})
}

我们示范用这个ReaderWriterState来写一段程序:模拟一段通讯端口使用程序并把使用情况记录下来。先传入一个端口号,在程序中可以重设使用的端口号:


val program: ReaderWriterState[Config, List[String], Int, Int] = for {
    _   <- log("Start - r: %s, s: %s")
    res <- invokeService
    _   <- log("Between - r: %s, s: %s")
    _   <- setService(8,"Com8")
    _   <- invokeService
    _   <- log("Done - r: %s, s: %s")
  } yield res      //> program  : scalaz.RWS[Exercises.rws.Config,List[String],Int,Int] = scalaz.I
                   //| ndexedReaderWriterStateT$$anon$5@223191a6

这倒像是一段高级语言写的程序。细节都在几个功能函数里。它们都必须返回ReaderWriterState类型:


case class Config(var port: Int, var portName: String)
  def log[R, S](msg: String): RWS[R, List[String], S, Unit] =
    ReaderWriterState {
      case (r, s) => (msg.format(r, s) :: Nil, (), s) //.point[Identity]
    }                                             //> log: [R, S](msg: String)scalaz.RWS[R,List[String],S,Unit]
  def invokeService: ReaderWriterState[Config, List[String], Int, Int] =
    ReaderWriterState {
      case (cfg, invocationCount) => (
        List("Invoking service with port: " + cfg.portName),
        scala.util.Random.nextInt(100),
        invocationCount + 1
      ) //.point[Identity]
    }                                             //> invokeService: => scalaz.ReaderWriterState[Exercises.rws.Config,List[String
                                                  //| ],Int,Int]
  def setService(p: Int, n: String): ReaderWriterState[Config, List[String], Int, Int] =
    ReaderWriterState {
      case (cfg, invocationCount) => cfg.port=p; cfg.portName=n
        (List("Changing service port to " + cfg.portName),
          scala.util.Random.nextInt(100),
          invocationCount)
    }                                             //> setService: (p: Int, n: String)scalaz.ReaderWriterState[Exercises.rws.Confi
                                                  //| g,List[String],Int,Int]

  val program: ReaderWriterState[Config, List[String], Int, Int] = for {
    _   <- log("Start - r: %s, s: %s")
    res <- invokeService
    _   <- log("Between - r: %s, s: %s")
    _   <- setService(8,"Com8")
    _   <- invokeService
    _   <- log("Done - r: %s, s: %s")
  } yield res                                     //> program  : scalaz.RWS[Exercises.rws.Config,List[String],Int,Int] = scalaz.I
                                                  //| ndexedReaderWriterStateT$$anon$5@223191a6
val r =   program run (Config(443,"Com3"), 0)     //> r  : scalaz.Id.Id[(List[String], Int, Int)] = (List(Start - r: Config(443,C
                                                  //| om3), s: 0, Invoking service with port: Com3, Between - r: Config(443,Com3)
                                                  //| , s: 1, Changing service port to Com8, Invoking service with port: Com8, Do
                                                  //| ne - r: Config(88,Com8), s: 2),68,2)
println("Result: " + r._2)                        //> Result: 68
println("Service invocations: " + r._3)           //> Service invocations: 2
println("Log: %n%s".format(r._1.mkString("\t", "%n\t".format(), "")))
                                                  //> Log: 
                                                  //|     Start - r: Config(443,Com3), s: 0
                                                  //|     Invoking service with port: Com3
                                                  //|     Between - r: Config(443,Com3), s: 1
                                                  //|     Changing service port to Com8
                                                  //|     Invoking service with port: Com8
                                                  //|     Done - r: Config(88,Com8), s: 2


相关文章
|
3月前
|
存储 JavaScript 前端开发
JavaScript——函数式编程Functor(函子)
JavaScript——函数式编程Functor(函子)
24 0
|
4月前
|
Scala 开发者
Scala中的模式匹配与高阶函数:探索强大的编程范式
【7月更文挑战第11天】Scala中的模式匹配和高阶函数是两种极其强大的特性,它们不仅提升了代码的表达力和可读性,还使得开发者能够编写出更加灵活和可重用的解决方案。通过
|
设计模式 存储 数据库
15 分钟了解 Monad(下)
15 分钟了解 Monad
83 0
|
Rust
15 分钟了解 Monad(上)
15 分钟了解 Monad
80 0
|
分布式计算 Shell API
scala函数式编程与高阶函数
谈到编程方式有指令式编程、过程化编程、函数式编程,函数式编程在使用时主要的思想就是把运算过程写成一些列嵌套的函数调用。把一组数据通过函数实现运算转化成另一组数据。函数式编程这种方式在我们将来开发Spark、Flink的业务代码时会大量使用。下面列出了一些我们经常使用的进行函数式编程的Iterable trait(可迭代特质)方法。
87 0
|
JavaScript 容器
【函数式编程】基于JS进行函数式编程(四)函子 | MayBe函子 | Monad函子
【函数式编程】基于JS进行函数式编程(四)函子 | MayBe函子 | Monad函子
170 0
【函数式编程】基于JS进行函数式编程(四)函子 | MayBe函子 | Monad函子