数据蒋堂 | JOIN提速 - 有序归并

简介:

我们再来看同维表和主子表的JOIN,这两种情况的优化提速手段是一样的。

设两个关联表的规模(记录数)分别是N和M,则HASH分段技术的计算复杂度(关联字段的比较次数)大概是SUM(Ni*Mi),其中Ni和Mi分别是HASH值为i的两表记录数,满足N=SUM(Ni)和M=SUM(Mi),这大概率会比完全遍历时的复杂度N*M要小很多(运气较好的时候会小K倍,K是HASH值的取值范围)。

如果这两个表针对关联键都有序,那么我们就可以使用归并算法来处理关联,这时的复杂度是N+M;在N和M都较大的时候(一般都会远大于K),这个数会远小于刚才那个SUM(Ni*Mi)。归并算法的细节有很多材料介绍,这里就不再赘述了。

但是,外键JOIN时不能使用这个办法,因为事实表上可能有多个要参与关联的外键字段,不可能让同一个事实表同时针对多个字段都有序。

同维表和主子表却可以!

因为同维表和主子表总是针对主键或主键的一部分关联,我们可以事先把这些关联表的数据按其主键排序。排序的成本虽然较高,但是一次性的。一旦完成了排序,以后就可以总是使用归并算法实现JOIN,效率能提高很多。

有序归并的意义还在于大数据的情况。像订单及其明细这种主子表是不断增长的事实表,时间长了常常会积累得非常大。

当要JOIN的两个表都大到内存无法放下的时候,关系数据库仍然是使用HASH分段的技术。根据关联字段的HASH值,将数据分成若干段,每段都足够小到能装入内存再实施内存的HASH分段算法。但这会发生外存倒换的问题,数据需要先分段写出再读入,多出一写一读,外存读本来就不快,写就更慢,这样性能会差出很多。运气不好时,一次HASH分段时可能会发生某段仍然太大而无法装入内存,这时就需要二次HASH,进一步加剧这个问题。而且,HASH分段算法在处理每一段时需要把整段读入内存,为了减少分段数量,就会根据内存大小尽量让分段变大,这样会用光所有内存,有并发运算时就会严重影响其它任务的性能。

归并算法则没有这个问题了,两个表的数据都只要遍历一次就行了,不仅是CPU的计算量减少,外存的IO量也大幅下降。而且,执行归并算法需要的内存很少,只要在内存中为每个表保持数条缓存记录就可以了,几乎不会影响其它并发任务对内存的需求。

SQL采用笛卡尔积定义的JOIN运算不区分JOIN类型,不假定某些JOIN总是针对主键的,就没办法从算法层面上利用这一特点,只能在工程层面进行优化。有些数据库会检查数据表在物理存储上是否针对关联字段有序,如果有序则采用归并算法,但基于无序集合概念的关系数据库不会刻意保证数据的物理有序性,许多操作都会破坏归并算法的实施条件。使用索引可以实现数据的逻辑有序,但物理无序时的遍历效率还是会大打折扣。

有序归并的前提是将数据按主键排序,而这类数据常常会不断追加,原则上每次追加后就要再次排序,而我们知道大数据排序成本通常很高,这是否会导致追加数据难度很大呢?其实,追加数据再加入的过程也是个有序归并,把新增数据单独排序后和已有序的历史数据归并,复杂度是线性的,相当于把所有数据重写一次,而不像常规的大数据排序需要缓存式写出再读入。在工程上做些优化动作还可以做到不必每次都全部重写,进一步提高维护效率。

有序归并的好处还在于易于分段并行。

现代计算机都有多核CPU,SSD硬盘也有较强的并发能力,使用多进程(或线程)并行计算就能够显著提高性能。但传统的HASH分段技术很难实现并行,多进程做HASH分段时需要同时向某个分段写出数据,造成共享资源冲突;而计算某一段又会几乎耗光所有内存,其它并行任务就无法实施。

使用有序归并实现并行计算时需要把数据分成多段,单个表分段比较简单,但两个关联表分段时必须同步对齐,否则归并时两个表数据错位了,就无法得出正确的计算结果,而数据有序就可以保证高性能的同步对齐分段。

先按主表(同维表则取较大的即可,其它讨论不影响)分段(如何能够较平均地分段且支持数据追加,我们以后会撰文解释),读出每段第一条记录的主键值,然后用这些键值到子表用二分法寻找定位(是否可以执行二分法和数据存储格式相关,后续文章也会谈到),从而获得子表的分段点。这样可以保证主子表的分段是同步对齐的。

因为键值有序,所以主表每段的记录键值都属于某个连续区间,键值在区间外的记录不会在这一段,键值在区间内的记录一定在这一段,子表对应分段的记录键值也有这个特性,所以不会发生错位情况;而同样因为键值有序,才可以在子表中执行高效的二分查找迅速定位出分段点,即数据有序保证了分段的合理性及高效性,这样就可以放心地执行并行算法了。


原文发布时间为:2017-12-21

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关文章
|
5月前
|
中间件 算法 搜索推荐
|
6月前
|
关系型数据库 MySQL 数据库
MySQL索引优化:深入理解索引合并
MySQL索引优化:深入理解索引合并
|
存储 缓存 自然语言处理
阿里二面:MySQL索引是怎么支撑千万级表的快速查找?
在 MySQL 官方提到,改善操作性能的最佳方法 SELECT 在查询中测试的一个或多个列上创建索引。索引条目的作用类似于指向表行的指针,从而使查询可以快速确定哪些行与WHERE子句中的条件匹配,并检索这些行的其他列值。所有MySQL数据类型都可以建立索引。
280 0
|
存储 搜索推荐 算法
“插入排序:小数据量排序的王者“
“插入排序:小数据量排序的王者“
143 0
|
存储 算法 Java
【难点攻克技术系列】「海量数据计算系列」如何使用BitMap在海量数据中对相应的进行去重、查找和排序
【难点攻克技术系列】「海量数据计算系列」如何使用BitMap在海量数据中对相应的进行去重、查找和排序
299 0
【难点攻克技术系列】「海量数据计算系列」如何使用BitMap在海量数据中对相应的进行去重、查找和排序
|
SQL 算法 关系型数据库
MySQL索引优化(为排序)
MySQL索引优化(为排序)
96 0
MySQL索引优化(为排序)
|
存储 C语言
【数据结构】排序特辑:归并外排序(基础)
归并外排序的操作以及实现(C语言) 注:本章需要用到文件操作的知识,如果有问题,可以先浏览学习一下文件操作的知识:⭐️ C语言进阶 ⭐️ 文件操作超详解【 建议关注+收藏 】
【数据结构】排序特辑:归并外排序(基础)
|
算法 搜索推荐
美团一面:两个有序的数组,如何高效合并成一个有序数组?
在说这个题目之前先来说说一个排序算法 “归并算法” 归并算法采取思想是分治思想,分治思想简单说就是分而治之,将一个大问题分解为小问题,将小问题解答后合并为大问题的答案。 乍一看跟递归思想很像,确实如此,分治思想一般就是使用递归来实现的。但是需要注意的是:递归是代码实现的方式,分治属于理论。
129 0
美团一面:两个有序的数组,如何高效合并成一个有序数组?