从5W2H数据分析方法论谈起

简介: 看了小蚊子的书,里面有一个例子让我印象很深刻: 数据分析员对公司的某个业务进行了专项研究。每当完成专题分析向老板汇报分析结果是,老板首先问:“你的分析方法论是什么?将给我听听,我看分析报告就首先看你的分析方法论,如果分析方法论不正确或者不合理,那后面的分析结果也就没有必要看了,在一个不正确或者不合理的方法论的指导下,得到的分析结果是不可能正确的”。

看了小蚊子的书,里面有一个例子让我印象很深刻:

数据分析员对公司的某个业务进行了专项研究。每当完成专题分析向老板汇报分析结果是,老板首先问:“你的分析方法论是什么?将给我听听,我看分析报告就首先看你的分析方法论,如果分析方法论不正确或者不合理,那后面的分析结果也就没有必要看了,在一个不正确或者不合理的方法论的指导下,得到的分析结果是不可能正确的”。

数据分析方法论主要用于指导数据分析师进行一个完整的数据分析,更多的是指数据分析的思路。从宏观角度指导如何进行数据分析,也就是说它是一个数据分析的前期规划,指导后期数据分析工作的开展。数据分析法则是具体的分析方法,比如对比分析,交叉分析,相关分析,回归分析,聚类分析则是具体的数据分析法。数据分析法主要是从微观的角度指导如何进行数据分析。

今天说一个5W2H分析法

5W2H分析法是以五个W开头的英语单词和两个H开头的英语单词进行提问,从回答中发现解决问题的线索,即Why,What,Who,When,Where,How,How much,这就是5W2H的分析法构架。

其实这个方法在我们做任何事时都是可以使用的。他可以弥补我们考虑问题时的疏漏。

比如使用5W2H分析法来分析网游用户的购买行为。

在确定使用5W2H分析法后,根据分析框架中的这些问题形成可量化的指标进行衡量和评价,例如月均购买次数、人均购买量,再次购买平均间隔时长等。

在我们确定了上述的方向和方法后,下一步才是使用具体的数据分析法,并且我们要结合数据进行分析。

事实上,每个方面都需要进行细化和分析,甚至要细化到每一条具体的购买记录或者充值记录,所谓的宏观的数据指标我们只能大概清楚了解问题,然而解决问题就必须细化到每个具体的数据点。真正的数据价值也就在于此,永远停留在表层的宏观数据是不能创造更多的知识和价值,数据挖掘为什么说是挖掘,挖掘的含义就在于,数据分析人员穿过了表层的宏观数据,挖掘每条记录背后的秘密。

所有的宏观数据,基本上每一个DBA都能给的出来,但是同样利用数据,分析人员通过挖掘技术和分析方法论的指导渗透到每条数据,依据需求给出数据的另一面。这就是在微观层面上数据的价值,而这也是数据挖掘应用在数据上的价值,尤其是当我们以后面临big data ,这种方式不仅较少了我们读取文件,分析文件的时间,有效分析方法论,有效分析手段,依据需求,模块化的得出某些需求下的具体结论。

相关文章
|
6月前
|
数据挖掘 测试技术
产品运营方法论问题之运营过程中持续的数据分析如何解决
产品运营方法论问题之运营过程中持续的数据分析如何解决
|
数据挖掘
分享五个常用的数据分析方法论,让你的数据分析报告更上一层楼~
如果你在做数据分析的时候,发现自己常常不知道从哪些维度去开展分析或者分析出来的报告总感觉逻辑上不连贯,内容上不完整,那么你一定是缺乏一个合适的数据分析方法论来指导你进行数据分析。
825 0
分享五个常用的数据分析方法论,让你的数据分析报告更上一层楼~
|
数据采集 SQL 人工智能
google数据分析方法论
写在前面作为开发同学,年初至今做了4个多月的数据分析工作,从刚开始的无从下手,到后来输出多个核心报表,解决了多个实际问题。这一路走来,的确有蛮多的心路历程,也积累了一些方法论。在此分享给同在数据分析路上摸索的小白同学。参考书籍:谷歌数据分析方法文章宗旨摒弃旧的思维模式,重新审视网络决策过程。更多的关注精确度,而不是准确度附:odps sql指令大全。(含示例数据构建,可以轻松学习各种用法)核心观点
317 1
|
新零售 大数据 数据挖掘
|
5月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
96 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
102 4
数据分析的 10 个最佳 Python 库
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
257 4
|
5月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
104 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析

热门文章

最新文章