小白学数据分析------>相关分析之距离分析在道具购买量的应用探索

简介: 前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的。

 

前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的。今天这里不谈偏相关分析,以为网友给我截图,问我下面的成交量相关系数的是怎么算出来的,其实这个就是复相关的典型应用,多变量的相关分析。插一句,该图来自于腾讯大讲堂15-市场研究及数据分析理念及方法概要介绍。大家如果需要,请到百度文库或者联系我都OK。

今天将通过Excel和SPSS向大家说说怎么来进行多变量的相关分析,既然是游戏数据分析,那么自然少不了如何利用游戏数据实现多变量的相关分析。在游戏数据分析方面,很多的数据都可以进行相关分析,比如界面按钮的点击次数,今天我们选取游戏道具的购买量进行相关分析。

我们知道游戏道具非常多,换句话说如果进行相关分析,尽管相关分析可以满足我们的计算要求,但是对于我们后期的评估和决策带来非常大不便利,所以这里建议大家做道具的相关分析先进行道具分类,比如FPS游戏中把AK47,M4A1归类为突击步枪,或者再高一个类别,武器,这样在不同的分类维度下进行相关分析,便于我们从不同的高度和角度来进行分析和决策。以下所示为示例数据(模拟),可以看到有7个品类的道具,从101-107,取出来共计10周的数据。

下面我们来看如何通过Excel进行多变量的相关分析。如何打开数据分析,选择相关分析,在上次文章已经提到了,这里不再累述,这里打开一下的对话框。

选择数据,数据区域选择B1:H1,选择好输出区域,点击确定,得到如下的相似矩阵:

有关这个矩阵的分析稍后在说完SPSS的操作再讲解,下面看看SPSS如何进行相关分析。在SPSS中,有专门的模块进行多变量的相关分析。SPSS中针对相关分析的三部分设置了三部分模块进行独立的分析。多变量的相关分析在SPSS中叫做距离分析,相对偏相关分析通过控制一些被认为次要的变量的影响得到两个变量之间的相关系数,距离分析解决的问题更加复杂,因为实际应用时每一个变量都携带了一定的信息,但是彼此在某些方面又是重叠的,举个例子,比如有个变量叫做突击步枪,突击步枪的销售量代表了AK47,M4A1等突击步枪的销售情况和信息,同时突击步枪也属于武器类别,与机枪等类别又有交叉,因为机枪和突击步枪都属于武器类别。

距离分析是对变量之间相似或者不相似程度的测度,通过计算一对变量之间的广义距离,将距离较小的变量归为一类,距离较大的变量归为其他类,这也是为聚类分析、因子分析打下基础。有关距离分析的更多详细内容这里不再累述,大家可以自己百度。

具体操作如下,首先看到SPSS中展示的数据,此为101-107系列道具的销售量:

之后选择分析|相关|距离界面,选择界面如下所示:

弹出对话框,如下所示,将var101-var107选入变量框中,此处最少包含两个变量。

计算距离包括两个两选择项,个案间和变量间,表示输出结果是个案或者变量间距离分析值。度量标准包括不相似性和相似性两个选项以及一个度量按钮。不相似性表示测度方法为不相似性测度。此时如果点击度量,弹出来距离:非相似性度量对话框,如下图所示:

有关该方面知识在这里不作解释和阐述,主要来看距离:相似性对话框的设置,首先如下图所示:

度量标准选择区间|Pearson相关性,转换值标准化|Z得分,其他的选项默认就可以了,这里简单解释一下几个选择的含义。Pearson相关性表示两个值矢量之间的积矩相关性,是定矩数据的缺省相似性测量。转换值是在计算距离之前对变量进行标准化的方法,这里使用Z得分,Z得分表示将值标准化到均值为0且标准差为1的Z得分,但同时注意标准化要指定标准化对象,这里是变量。

在完成以上的设置后,点击确定将会输出结果,上面的为案例处理摘要,下面的为距离分析的近似矩阵。

下面我们结合Excel和SPSS的分析结果来具体分析一下,在Excel的分析结果中,我们发现105系列道具相关性最弱,那么这个品类就需要我们去进一步探究一下。从SPSS的结果来看,105系列道具确实相关性系数较低,其次是103系列道具相关系数也比较低,但是从总体的Excel和SPSS分析结果来看,101与106、102与106、103与105、104与106、107与102相关性很高,这就是我们得出的结论,最后我们来看看这几个类别道具具体指的是什么:

101:突击步枪

102:冲锋枪

103:机枪

104:狙击步枪

105:shouqiang

106:投掷武器

107:近战武器

故而从这里我们再来看一下,大概了解了FPS游戏的玩家作战配置,突击步枪+投掷武器;冲锋枪+投掷武器;机枪+投掷武器;狙击步枪+投掷武器;冲锋枪+近战武器。当然这种配置不是绝对的,还要考虑游戏本身在这方面的设计情况,比如很多游戏主武器是突击步枪,副武器是冲锋枪,这种情况是要结合业务来考虑,而最终我们通过分析得出的结果,也要根据具体的需要进行筛选和调整。

以上是相关性分析的最复杂的一部分,希望解决一部分网友的疑问,这种方法的参考性和实际利用性还需要进一步检验和证明,属于探索内容,请使用者慎重考虑。

参考:

SPSS统计分析从入门到精通 陈胜可著

SPSS18官方文档

相关文章
|
4月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
9月前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
303 71
|
2月前
|
机器学习/深度学习 Java 大数据
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
|
3月前
|
数据采集 人工智能 算法
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
153 34
|
2月前
|
数据采集 SQL 监控
“你分析个锤子啊,米都没洗净”——数据采集和数据分析的底层逻辑真相
“你分析个锤子啊,米都没洗净”——数据采集和数据分析的底层逻辑真相
86 0
|
10月前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
288 11
|
10月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
509 5
|
5月前
|
机器学习/深度学习 数据可视化 算法
销售易CRM:移动端应用与数据分析双轮驱动企业增长
销售易CRM移动端应用助力企业随时随地掌控业务全局。销售人员可实时访问客户信息、更新进展,离线模式确保网络不佳时工作不中断。实时协作功能提升团队沟通效率,移动审批加速业务流程。强大的数据分析与可视化工具提供深度洞察,支持前瞻性决策。客户行为分析精准定位需求,优化营销策略。某中型制造企业引入后,业绩提升30%,客户满意度提高25%。
|
9月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
378 73
|
8月前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
252 22

热门文章

最新文章