小白学数据分析之关联分析算法篇Apriori

简介: 早些时候写过关于购物篮分析的文章,其中提到了C5.0和Apriori算法,没有仔细说说这算法的含义,昨天写了一下关联分析的理论部分,今天说说关联分析算法之一的Apriori算法,很多时候大家都说,数据分析师更多的是会用就可以了,不必纠结于那些长篇累牍的理论,其实我觉得还是有点必要的,你未必要去设计算法,但是如果你掌握和熟知一个算法,这对于你如何驾驭和使用这个算法是很有帮助的,此外每个算法都有使用的局限性,比如空间和时间复杂度,使用条件约束。

早些时候写过关于购物篮分析的文章,其中提到了C5.0Apriori算法,没有仔细说说这算法的含义,昨天写了一下关联分析的理论部分,今天说说关联分析算法之一的Apriori算法,很多时候大家都说,数据分析师更多的是会用就可以了,不必纠结于那些长篇累牍的理论,其实我觉得还是有点必要的,你未必要去设计算法,但是如果你掌握和熟知一个算法,这对于你如何驾驭和使用这个算法是很有帮助的,此外每个算法都有使用的局限性,比如空间和时间复杂度,使用条件约束。最典型的就是我们难道一份原始数据,然后经过数据处理要进行算法模拟分析,但是此时你会出现一个问题,我需要处理哪些数据,如何处理?而这就需要你对你所使用的算法必须熟悉,比如能够操作的数据格式,类型。比如GRI算法要求使用的数据必须是事实表的方式存储,这样的算法特点必须建立在对于算法的了解把握层次上。

Apriori算法

其名字是因为算法基于先验知识(prior knowledge).根据前一次找到的频繁项来生成本次的频繁项。Apriori是关联分析中核心的算法。

Apriori算法的特点

只能处理分类变量,无法处理数值型变量;

数据存储可以是交易数据格式(事务表),或者是事实表方式(表格数据);

算法核心在于提升关联规则产生的效率而设计的。

Apriori的思想

正如我们之前所提到的,我们希望置信度和支持度要满足我们的阈值范围才算是有效的规则,实际过程中我们往往会面临大量的数据,如果只是简单的搜索,会出现很多的规则,相当大的一部分是无效的规则,效率很低,那么Apriori就是通过产生频繁项集,然后再依据频繁项集产生规则,进而提升效率。

以上所说的代表了Apriori算法的两个步骤:产生频繁项集和依据频繁项集产生规则。

那么什么是频繁项集?

频繁项集就是对包含项目A的项目集C,其支持度大于等于指定的支持度,则CA)为频繁项集,包含一个项目的频繁项集称为频繁1-项集,即L1

为什么确定频繁项集?

刚才说了,必须支持度大于我们指定的支持度,这也就是说能够确定后面生成的规则是在普遍代表性上的项目集生成的,因为支持度本身的高低就代表了我们关联分析结果是否具有普遍性。

怎么寻找频繁项集?

这里不再讲述,直接说一个例子大家就都明白了。例子来源于Fast Algorithms for Mining Association Rules

Apriori寻找频繁项集的过程是一个不断迭代的过程,每次都是两个步骤,产生候选集Ck(可能成为频繁项集的项目组合);基于候选集Ck计算支持度,确定Lk

Apriori的寻找策略就是从包含少量的项目开始逐渐向多个项目的项目集搜索。

数据如下:

我们看到,数据库存储的数据格式,会员100购买了 1 3 4三种商品,那么对应的集合形式如右边的图所示。那么基于候选集C1,我们得到频繁项集L1,如下图所示,在此表格中{4}的支持度为1,而我们设定的支持度为2。支持度大于或者等于指定的支持度的最小阈值就成为L1了,这里{4}没有成为L1的一员。因此,我们认定包含4的其他项集都不可能是频繁项集,后续就不再对其进行判断了。

 

 

此时我们看到L1是符合最低支持度的标准的,那么下一次迭代我们依据L1产生C24就不再被考虑了),此时的候选集如右图所示C2(依据L1*L1的组合方式)确立。C2的每个集合得到的支持度对应在我们原始数据组合的计数,如下图左所示。

 

此时,第二次迭代发现了{1 2} {1 5}的支持度只有1,低于阈值,故而舍弃,那么在随后的迭代中,如果出现{1 2} {1 5}的组合形式将不被考虑。

 

如上图,由L2得到候选集C3,那么这次迭代中的{1 2 3} { 1 3 5}哪去了?如刚才所言,{1 2} {1 5}的组合形式将不被考虑,因为这两个项集不可能成为频繁项集L3,此时L4不能构成候选集L4,即停止。

如果用一句化解释上述的过程,就是不断通过Lk的自身连接,形成候选集,然后在进行剪枝,除掉无用的部分。

根据频繁项集产生简单关联规则

Apriori的关联规则是在频繁项集基础上产生的,进而这可以保证这些规则的支持度达到指定的水平,具有普遍性和令人信服的水平。

以上就是Apriori的算法基本原理,留了两个例子,可以加深理解。

例子1

例子2

相关文章
|
21天前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
45 4
|
4天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
24天前
|
数据挖掘 UED
ChatGPT数据分析——探索性分析
ChatGPT数据分析——探索性分析
28 1
|
24天前
|
数据可视化 数据挖掘 数据处理
ChatGPT数据分析应用——热力图分析
ChatGPT数据分析应用——热力图分析
56 1
|
24天前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(分组分析)
ChatGPT在常用的数据分析方法中的应用(分组分析)
49 1
|
11天前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
20 0
|
17天前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
23 0
|
2月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
49 4
|
2月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
31 1
|
2月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。

热门文章

最新文章