小白学数据分析----->到底要怎么做流失分析

简介: 最近看了很多关于流失分析的文章,也构建了一些模型,流失这个问题看似有些让人抓不住一根主线来做,这几天也有几个朋友问我怎么来做流失的分析,但是最近工作变动,外加上很忙,就没有很好的跟他们说说这个问题。

最近看了很多关于流失分析的文章,也构建了一些模型,流失这个问题看似有些让人抓不住一根主线来做,这几天也有几个朋友问我怎么来做流失的分析,但是最近工作变动,外加上很忙,就没有很好的跟他们说说这个问题。说道流失流失分析,很多人都知道使用决策树算法,C5.0、Chaid、Quest或者贝叶斯,也有用聚类分析的,总的来说流失分析的方法很多,但这些都是技术层面的,也算不上是一个流失模型。

前几天看到一篇文章来讲述怎么分析永恒之塔的流失(http://www.dmacn.com/viewthread.php?tid=31&extra=page%3D1),方法和过程真的很不错,不过流失分析远比这个还要多,其原因在于,那篇文章中,作者是选取了1-10级的新手作为研究对象,而实际上,流失分析面向的对象不仅仅就是新手(废话,谁都知道!),这句话是句废话,现在看,做数据分析的都明白,然而一旦真的做数据分析,研究流失率时,往往就忽略了我们要对那些人进行流失分析,眉毛胡子一把抓。

早先写过一篇关于流失分析设计的文章(http://www.cnblogs.com/yuyang-DataAnalysis/archive/2012/04/17/2454180.html),但是后来反映设计的过于复杂和繁琐,没必要这么分析。其实,我觉得很有必要。流失分析不是你信手拈来就开始做你的流失分析的。在之前的文章中,主要设计的是历史用户的流失分析方式,把历史用户的流失分成了留存、沉默、流失、回流、植物等几类情况,实际上这种分类的形式是由玩家的游戏生命进程(生命周期)决定的,原因我觉得有以下几点:

  1. 游戏进程不同,用户的反馈不同;
  2. 不同阶段的流失用户,不同的挽留措施;
  3. 不同生命进程,流失用户特征不同。

正如文章所言,流失分析很多情况下只是告诉你谁会流失,流失的人有什么特征,而这两点对应的是流失分析的两个方面:

      1.  谁会流失->流失用户的预测,告诉你流失的可能;

      2.  流失特征->流失用户的特征,告诉你流失的特征。

而流失分析最终的目的是通过这两点,仅仅结合业务分析流失的原因(再好的算法,模型不会告诉你原因),而解决了谁会流失,流失特征,流失的原因,那么就可以进行挽留措施的实施,到此一个完整的流失分析闭环才形成。

形成闭环的原因在于,新的一批用户会继续检验我们的流失分析模型,我们希望在同样的游戏进程时期或者状态下,能够通过不断的修正模型,使之具有普适性。这样的一些模型最后组合起来,就可以比较全面的描述玩家不同的游戏生命进程的流失特征。当然这需要不断的实验和分析,因为用户的质量也是要考虑的。最后,建立在反复使用模型分析的基础上,得到显著性的模型框架。

而这个过程中,值得我们注意的是,往往我们很多时候做的是这其中一小部分,而我们恰恰把这一小部分放大认为是流失分析的全部,比如我们做了40级-50级的流失用户,找出流失用户可能性,流失特征,但是往往忽略做一些挽留的措施,挽留的措施有的是软性的,比如通过活动,奖励等实施,也有通过更改系统设计来弥补,但是这要看你做的流失分析用户流失的严重程度,换句话说如果这一阶段的流失是一部分客群引起的高流失,而这部分客群不代表我们整体客群(流失客群的特征与之前历史客群在该阶段流失特征不符合,那么这就不是系统设计的因素造成的),此时就不能轻易使用更改系统设计的办法,多数情况下采取软性的手段,帮助用户过度。

然而,回头来看,站在一个高度来看我们是根据了玩家的游戏进程到什么阶段(处于的状态)来确定我们的流失分析对象和方法的。

看了永恒之塔的流失分析我发现,之前的针对新手的流失分析没有深入的做过研究,PRARA模型关注的很多也是用户保有留存的问题,可以看得出一批新用户,我们关注更多的是留存问题,而那些历史用户我们关注的流失问题。

针对用户流失的设计我们大概有月流失,周流失,沉默,然而我们在这块的分析远远没有达到一个高度,毕竟我们的收入主体还是来源于这些历史用户,本身来说付费转化,游戏学习成本都很低了,专注这些用户,做好挽留发挥的效益更大。

然而新用户正如文章也提及的情况,新用户对游戏的学习,操控,熟悉还不完全,即使我们获取了信息,流失特征,流失可能性,大概我们想找出来玩家为什么还是会离开难度就会比较大,即使我们有最好的新手体验流程和新手缓冲期,但不能避免的用户流失(当然这不是说新用户的留存、流失分析不重要)。然而反过来当玩家游戏生命周期进入稳定期或者提升期,却面临了很大的流失,那么我们获取流失特征,分析流失可能性,最后做出挽留得到的效益远远大于新手的流失分析。

说了上面这句话大概看到的人会笑,会喷我,补充一句的是,一个游戏就像一个池子,有进水口,也有出水口,我们希望进水口大,出水口小,然而进水口再大,你不进水,有一天出水口也会让池子干涸,因此控制出水的同时,也要想办法做好进水口,也就是如何做好新玩家的分析,预测,挽留。因为留下的新玩家有一天也会变成我们定义的老用户,进而变成我们要设法挽留的老用户。每个玩家在游戏中都是有生命周期的,流失分析的目的是拉长这个周期的同时,将价值发挥到最大。

相关文章
|
5月前
|
数据采集 存储 数据挖掘
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
本文介绍了一个基于Python的书旗网小说网站数据采集与分析系统,通过自动化爬虫收集小说数据,利用Pandas进行数据处理,并通过Matplotlib和Seaborn等库进行数据可视化,旨在揭示用户喜好和市场趋势,为图书出版行业提供决策支持。
431 6
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
|
3月前
|
数据挖掘 UED
ChatGPT数据分析——探索性分析
ChatGPT数据分析——探索性分析
60 1
|
3月前
|
数据可视化 数据挖掘 数据处理
ChatGPT数据分析应用——热力图分析
ChatGPT数据分析应用——热力图分析
133 1
|
3月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(分组分析)
ChatGPT在常用的数据分析方法中的应用(分组分析)
75 1
|
3月前
|
数据挖掘 数据处理
ChatGPT在常用的数据分析方法中的应用(交叉分析)
ChatGPT在常用的数据分析方法中的应用(交叉分析)
61 1
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
72 0
|
3月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(对比分析)
ChatGPT在常用的数据分析方法中的应用(对比分析)
66 0
|
4月前
|
机器学习/深度学习 人工智能 数据挖掘
数据分析师是在多个行业中专门从事数据搜集、整理和分析的专业人员
数据分析师是在多个行业中专门从事数据搜集、整理和分析的专业人员
49 3
|
5月前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
68 0
|
5月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
267 0

热门文章

最新文章