基于python从redmine-api中获取项目缺陷数据并可视化(2)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 上一篇文章讲到缺陷数据的获取实现方式,这篇文章主要讲讲如何通过web框架flask将获取到的数据进行web数据可视化1.调研python web框架一开始想通过html+js+highcharts去实现数据可视化,但是实现起来不方便而且本人js及前端开发了解甚少,所以还是借助web框架。

上一篇文章讲到缺陷数据的获取实现方式,这篇文章主要讲讲如何通过web框架flask将获取到的数据进行web数据可视化

1.调研python web框架

一开始想通过html+js+highcharts去实现数据可视化,但是实现起来不方便而且本人js及前端开发了解甚少,所以还是借助web框架。故调研了以下框架进行对比分析,最终选取了flask框架

web框架调研对比.png

2.安装搭建web框架

2.1.安装flask

安装flask最便捷的方式是使用虚拟环境,这是一个python解释器的一个私有副本,即virtualenv。
我用的是python3.6,在命令窗口用:

$pip3 install virtualenv*

即可自动安装,安装完虚拟环境,则要开始使用了,在你的项目文件的目录执行:

$virtualenv venv*

出现下面结果,那么恭喜你你的第一个虚拟环境就建好了。

 ~ pip3 install virtualenvCollecting virtualenv  Downloading virtualenv-15.1.0-py2.py3-none-any.whl (1.8MB)    100% |████████████████████████████████| 1.8MB 650kB/sInstalling collected packages: virtualenvSuccessfully installed virtualenv-15.1.0  ~ cd /Users/zhangmeiyuan/PycharmProjects/MyProject  MyProject lsTEST     test1.py  MyProject virtualenv venvUsing base prefix '/Library/Frameworks/Python.framework/Versions/3.6'New python executable in /Users/zhangmeiyuan/PycharmProjects/MyProject/venv/bin/python3.6Also creating executable in /Users/zhangmeiyuan/PycharmProjects/MyProject/venv/bin/python
Installing setuptools, pip, wheel...done.

virtualenv 安装完毕,你可以立即打开 shell 然后创建你自己的环境。在python3下由于在MAC上自带pyvenv,不用额外安装。
我用的是mac:故操作如下:

mkdir .pyvenv
cd .pyvenv
pyvenv flask_venv
source flask_venv/bin/activate
 cd /Users/zhangmeiyuan/PycharmProjects/MyProject  MyProject mkdir .pyvenv  MyProject cd .pyvenv  .pyvenv pyvenv flask_venvWARNING: the pyenv script is deprecated in favour of `python3.6 -m venv`  .pyvenv source flask_venv/bin/activate
(flask_venv)   .pyvenv 

启动成功后,会在前面多出 flask_env字样,如下所示

zhangmeiyuan-4:.pyvenv zhangmeiyuan$ source flask_venv/bin/activate
(flask_venv) zhangmeiyuan-4:.pyvenv zhangmeiyuan$ 

接下来就可以在虚拟环境中安装包,不影响外貌的环境

pip3 install requests
pip3 install flask_sqlalchemy
pip3 install pymysql 
pip3 install flask
pip3 install flask-script
pip3 install flask-migrate

退出虚拟环境
deactivate

2.2Flask 创建代码工程

体验 Flask
有一点准备工作要做,既然 Flask 是一个 MVC 的 web 框架,我们就得按照 MVC 的模式来对代码文件分层。

  1. 首先我们创建一个工作的文件目录
$ mkdir -p bug_report/app
$ mkdir -p bug_report/app/static
$ mkdir -p bug_report/app/templates

Tips: 我们的应用程序包是放置于 app 文件夹中。子文件夹static
用来存放静态文件例如图片,JS 文件以及样式文件。子文件夹templates是存放模板文件类的html文件。

  1. 接下来我们进入到 app 文件夹中,并创建init.py和views.py
$ cd bug_report/app 
$ touch __init__.py 
$ touch views.py
  1. 上面创建项目是直接在命令行进行,也可以打开pycharm创建flask项目
screenshot.png

location为项目路径
interpreter为解释器路径,我们可以将这里更改为自己创建的虚拟环境中的解释器,
第一次添加需要add local,选定制定虚拟环境文件夹flask_env/bin/python3.6,
创建好后默认会出现一个简单的flask程序

  1. 让我们编写第一个视图函数(文件app/views.py
    )
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from flask import flask

app = Flask(__name__)

@app.route('/')
@app.route('/index')
def index():
    return "Hello, World!"
if __name__ == '__main__':
    app.run(host='localhost', port=8888, debug=True)

Flask自带一个Web服务器,Run这个文件后,就会开始监听,可以使用,出现如下提示

/Users/zhangmeiyuan/PycharmProjects/MyProject/.pyvenv/flask_venv/bin/python3.6 /Users/zhangmeiyuan/PycharmProjects/bug_report/app/views.py
 * Running on http://localhost:8888/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 117-803-899

在浏览器输入http://localhost:8888/index,最终效果图如下

screenshot.png

以上flask框架已经基本搭建完成,可以在已经建好的项目中进行编程实现缺陷数据可视化

3.采用pygal charts+flask+mysql实现缺陷数据可视化

3.1框架设计

流程框架如下:

生成缺陷数据可视化流程图.png

代码目录框架如下:
├── pycache
│ └── mysql_save.cpython-36.pyc
├── app
│ ├── init.py
│ ├── pycache
│ │ ├── init.cpython-36.pyc
│ │ └── views.cpython-36.pyc
│ ├── static
│ │ └── pygal-tooltips.min.js
│ ├── templates
│ │ ├── charts.html
│ │ └── config.py
│ └── views.py
├── fix_period.py
├── mysql_save.py
└── run.py

3.2实现过程

从上一篇文章写到,从redmine获取到的数据将存在mysql中,所以Flask + sqlalchemy 是一种不错的选择,由于自己此前完全未接触过 flask,基本是零基础边学边用,对于网页展示动态数据,摸索了很久才弄明白其实现方式原理,而且遇到各种各样的调试问题,所以这块的功能实现的时间比较长也比较坎坷。

数据展示层的代码如下:由于涉及业务内容,只拿(三种类型的图)出来展示

def bugdata():
   try:
       conn = pymysql.connect(host='localhost', user='root', passwd='****', db='test', charset='utf8')
   except Exception as e:
       print(e)
       sys.exit()
   cursor = conn.cursor()
   sql = "select distinct category,bugs from priority_line where bank='***' "
  
   sql3 = "select distinct date_time,newbug,closebug from bug_line where bank='***' "

   sql5 = "select distinct period_time,bugs from period_line where bank='***' "
   cursor.execute(sql)
   alldata = cursor.fetchall()
   print(alldata)
   cursor.execute(sql2)
   alldata1 = cursor.fetchall()
   print(alldata1)
  
   cursor.execute(sql4)
   alldata3 = cursor.fetchall()
  

   title = " This is a  demo"
   pie_chart = pygal.Pie()
   
   pie_chart.title = '电子账户4.2_priority_bug'
   line_chart = pygal.Line()
   line_chart1 = pygal.Bar()
   line_chart.title = '电子账户4.2_bug_trend'
#饼图
   if alldata:
       for rec in alldata:
           print(rec[0], rec[1])
           pie_chart.add(rec[0], rec[1])
       chart = pie_chart.render_data_uri()
   pie_chart2.title = '电子账户4.2_author_bug'
#折线图
   if alldata2:
       date_time =[]
       new_bug = []
       close_bug = []
       for rec in alldata2:
           date_time.append(rec[0])
           new_bug.append(rec[1])
           close_bug.append(rec[2])
       print(date_time)
       print(close_bug)
       line_chart.title = '电子账户4.2_Bug_trend'
       line_chart.x_labels=date_time
       line_chart.add('new_bug',new_bug)
       line_chart.add('close_bug',close_bug)
       chart1 = line_chart.render_data_uri()
   
 #柱形图
   line_chart1.title = '电子账户4.2_period_time'
   if alldata4:
       period_time = []
       bugs = []
       for rec in alldata4:
           period_time.append(rec[0])
           bugs.append(rec[1])
       print(period_time)
       print(bugs)
       line_chart1.title = '电子账户4.2_period_line'
       line_chart1.x_labels = period_time
       line_chart1.add('bugs', bugs)
       chart4 = line_chart1.render_data_uri()

   return render_template('charts.html', title=title,chart=chart,chart2=chart2,chart3=chart3,chart4=chart4)

   cursor.close()
   conn.close()

if __name__ == '__main__':
   app.run(host='localhost', port=8888, debug=True)

charts.html代码如下

<!DOCTYPE html>
<html>
<head>

    <meta charset="utf-8">
    <script type="text/javascript" src="{{url_for('static',filename='pygal-tooltips.min.js')}}"></script>
    <script type="text/javascript" src="http://kozea.github.com/pygal.js/javascripts/svg.jquery.js"></script>
</head>

<body>
**************
隐藏
**************
    <h3 style="text-align:center;">电子账户4.2_质量分析报告可视化</h3>
    <div id="chart">
        <embed type="image/svg+xml" src={{ chart|safe}}></embed>
        <embed type="image/svg+xml" src={{ chart3|safe}}></embed>
        <embed type="image/svg+xml" src={{ chart1|safe}}></embed>
        <embed type="image/svg+xml" src={{ chart4|safe}}></embed>
    <embed type="image/svg+xml" src={{ chart2|safe}}></embed>
    </div>
 author: Jammy
</body>

</html>

最后成果如下(后续还将继续优化展示结果、新增维度分析及支持多个项目缺陷数据图片查询):

all.png
1.png
bug_trend.png
period_line.png
status_line.png
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
9天前
|
供应链 监控 安全
1688商品详情API接口实战指南:合规获取数据,驱动B2B业务增长
1688商品详情API(alibaba.product.get)是合规获取B2B商品数据的核心工具,支持全维度信息调用,助力企业实现智能选品、供应链优化与市场洞察,推动数字化转型。
|
13天前
|
JSON 缓存 自然语言处理
多语言实时数据微店商品详情API:技术实现与JSON数据解析指南
通过以上技术实现与解析指南,开发者可高效构建支持多语言的实时商品详情系统,满足全球化电商场景需求。
|
14天前
|
缓存 监控 供应链
京东自定义 API 操作深度分析及 Python 实现
京东开放平台提供丰富API接口,支持商品、订单、库存等电商全链路场景。通过自定义API组合调用,可实现店铺管理、数据分析、竞品监控等功能,提升运营效率。本文详解其架构、Python实现与应用策略。
|
14天前
|
缓存 监控 供应链
唯品会自定义 API 自定义操作深度分析及 Python 实现
唯品会开放平台提供丰富API,支持商品查询、订单管理、促销活动等电商全流程操作。基于OAuth 2.0认证机制,具备安全稳定的特点。通过组合调用基础接口,可实现数据聚合、流程自动化、监控预警及跨平台集成,广泛应用于供应链管理、数据分析和智能采购等领域。结合Python实现方案,可高效完成商品搜索、订单分析、库存监控等功能,提升电商运营效率。
|
12天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
9天前
|
缓存 监控 供应链
亚马逊 MWS API 实战:商品详情精准获取与跨境电商数据整合方案
本文详细解析亚马逊MWS API接口的技术实现,重点解决跨境商品数据获取中的核心问题。文章首先介绍MWS接口体系的特点,包括多站点数据获取、AWS签名认证等关键环节,并对比普通电商接口的差异。随后深入拆解API调用全流程,提供签名工具类、多站点客户端等可复用代码。针对跨境业务场景,文章还给出数据整合工具实现方案,支持缓存、批量处理等功能。最后通过实战示例展示多站点商品对比和批量选品分析的应用,并附常见问题解决方案。该技术方案可直接应用于跨境选品、价格监控等业务场景,帮助开发者高效获取亚马逊商品数据。
|
14天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
14天前
|
JSON 监控 API
速卖通商品列表API秘籍!轻松获取商品列表数据
速卖通商品列表API支持关键词搜索、分类筛选、多语言返回及分页排序功能,适用于比价系统、库存监控、市场研究等场景。开发者可快速获取商品数据,构建自动化应用。
|
13天前
|
数据采集 算法 API
阿里巴巴商品详情API秘籍!轻松获取商品详情数据
阿里巴巴商品详情API支持获取1688平台商品的标题、价格、库存、图片等核心信息,助力电商数据采集与分析。基于RESTful架构,通过App Key/Secret认证,安全可靠。提供Python示例代码,便于快速集成。
|
9天前
|
人工智能 供应链 API
淘宝API商品详情接口全解析:从基础数据到深度挖掘
淘宝API商品详情接口不仅提供基础数据,更通过深度挖掘实现从数据到洞察的跨越。开发者需结合业务场景选择合适分析方法,利用AI标签、区块链溯源等新技术,最终实现数据驱动的电商业务创新。

推荐镜像

更多