独家 | 10分钟带你上手TensorFlow实践(附代码)

简介:

这篇TensorFlow教程的目标读者是那些对机器学习有一定基本概念并且想尝试上手TensorFlow的人。首先你需要安装好TensorFlow(可以跟着本教程进行安装http://cv-tricks.com/artificial-intelligence/deep-learning/deep-learning-frameworks/tensorflow/install-tensorflow-1-0-gpu-ubuntu-14-04-aws-p2-xlarge/。 本教程共分为两部分: 第一部分我们会配合代码实例解释基础概念, 第二部分我们会构建一个线性回归模型。

第一部分: TensorFlow基础

TensorFlow是一个用于数值计算的库,其中数据沿着图(graph)而流动。在TensorFlow中数据用n维数组表示并被称之为Tensors。而图(graph)由数据(也叫Tensors)和数学运算共同组成。

  • 图中的节点: 代表数学运算
  • 图中的边(edges): 代表在不同运算中流动的Tensors

TensorFlow不同于其他编程语言的另一个方面是: 在TensorFlow中无论你要构建什么,首先你需要构思整个蓝图。在创建图的时候,变量并没有被赋值。随后当已经创建了完整的图之后,还需要在一个会话(session)中去运行它,此时图中的变量才会被赋值。稍后还有更详细的介绍。

现在让我们通过动手来学习。运行Python并导入tensorflow:

857a574652267ef0c20f09eee13bcd6c83ad962b

1. TensorFlow中的图

图是TensorFlow的主干,所有的计算/操作/变量都位于图中。代码中发生的一切都位于TensorFlow提供的一个默认图中。可以通过如下代码访问该图:

361820d7afc773bceb1dec5661d635fe18bb3bf6

你也可以这样得到所有操作的list:

92eb47ef655c258a41bc76da6c6e7cb17c80bd5f

由于现在图是空的,所以该语句的输出也是空的,即[]。

如果想打印出各操作的名称,用这条语句:

c1cee94802260c3c7e1e0eaff4ae1b674bcd65c1

这回还是空的,等我们在图中加入了操作之后再来执行该语句。

另外,我们也可创建多个图,现在先不细讲。

2. TensorFlow会话

图是用来定义操作的,而操作必须运行在一个会话(session)中,图和会话的创建是相互独立的。可以把图想象成是设计蓝图,则会话就是它的施工地点。

图仅仅是定义了计算或者说构建了设计蓝图。 然而,除非我们在会话中运行图或者图的一部分,否则没有任何变量也没有任何值。 

可以这样创建会话:

4eaad59f055174f471821f70df270768e459a5a0

打开一个会话时,要记得在结尾处关闭。或者可以用python中的with语句块,如此一来,它将会自动被关闭: 

fae2098ed8ef21155598fdf9222c2ff60a953ce6

在本教程的代码中我们会频繁使用with语句块,我们也推荐你这样操作。

3. TensorFlow中的Tensors

TF将数据保存在Tensors中,它有点像numPy包中的多维数组(尽管它们和numPy数组不同)

常量

常量的值不能修改,定义方式如下:

ea856425aa38009b7537b0781d974fb69b79f014

可以看到,不同于Python之类的其他语言,这里并不能直接打印/访问常量的值,除非在会话中运行,再来试一下:

a42863142d374191db43a19ae650aadf9aa38d8f

这回打印了输出结果1.0

变量

即Tensors,和其它语言中的变量相似。

9efbcaf28abfcf100f74d6f0d67b7e1ff5e968d1

变量(顾名思义)和常量不同,能够存储不同的值。然而,在TF中,变量需要分别进行初始化,单独初始化每个变量效率很低。但TensorFlow提供了一次性初始化所有变量的机制,具体方法如下:

对于0.11及更早的tf版本,使用initialize_all_variables()方法:

>>>init_op = tf.initialize_all_variables()

0.12及以后的版本,使用global_variables_initializer():

>>>init_op = tf.global_variables_initializer()

上述代码会把init_op添加到TensorFlow的默认图中。

现在,试图访问刚才定义的变量b之前,先运行一下init_op,打印b输出2.0:

df83de0880834f34678326d4507495c3137ee536

现在可以打印出该图中的全部操作:

a346eaa362eaf1d30d3645b751fecd36af4faddf

这回输出了:

Const
test_var/initial_value
test_var
test_var/Assign
test_var/read
init

如你所见,之前定义过常量a, 所以它被加到了图中。同理,对于变量b而言,许多’test_var’的状态,例如test_var/initial_value,test_var/read等也被加入了图中。你可以利用TensorBoard来可视化整个网络,TensorBoard是一个用于可视化TensorFlow图和训练过程的工具。

占位符

占位符,顾名思义表示占位,是指等待被初始化/填充的tensors。占位符被用于训练数据,只有当代码是在会话中运行的时候占位符才会被填充。“喂给”占位符的东西叫做feed_dict。Feed_dict是用于存储数据的(一系列)键值对:

140ee376ff8c89a6de7a7ad721f33d2cc0a8817b

上例输出结果为6.

4. 在TensorFlow中应用设备 

TensorFlow具有非常强大的内置功能,可以在gpu, cpu或者gpu集群上运行你的代码。 它为你提供了选项,使你能选择要用来运行代码的设备。 这里不对此进行详细介绍,随后会有单独关于这个主题的教程。先来看一下TensorFlow全貌:

a8bcd35837bea0fb4ceaf2e67df5dcf536d7e18a

第二部分: 简单代码样例

这部分我们会学习线性回归的代码,首先来看几个代码中用到的TensorFlow函数:

创建随机正态分布:

使用random_normal创建服从正态分布的随机值。本例中,w是一个784*10的变量,其中的值服从标准差为0.01的正态分布。

5fa7a3e5422dd32ae0a3df16dd358fd296ba598b

Reduce_mean:

计算一个数组的均值

0853112223057c22a3a80c89deb5eb95ba025153

输出35

ArgMax:

类似于python中的argmax, 返回沿指定轴方向上,tensor最大值的索引

77c94ce9990d66aa7f2afd99de13639e2619c8be

输出:array([2, 0]), 表示每一行中最大值的索引。

线性回归练习:

问题描述:线性回归中,开始时有很多数据点,我们的任务是用一条直线来拟合这些点。本例中,我们将生成100个点,并拟合他们。

生成训练数据

trainX的值位于-1和1之间。

trainY是trainX的3倍外加一些干扰值。

占位符

定义两个占位符,用于随后填充训练数据

0b55a0d4aa5773d45c44a9f6a958687c33bbeec7

建模

线性回归的模型是 y_model = w * x, 我们需要计算出w的值。首先可以初始化w为0来建立一个模型, 并且定义cost函数为(Y – y_model)的平方。TensorFlow中自带了许多优化器(Optimizer),用来在每次迭代后更新梯度,从而使cost函数最小。这里我们使用GradientDescentOptimizer以0.01的学习率来训练模型, 随后会循环运行该训练操作:

44fd76ab4437a2375b3bd47125c1bf088dfe43d1

训练

目前为止,我们仅仅是定义好了图,还没有任何具体的计算。

TensorFlow的变量还没有被赋值。为了真正运行定义好的图,还需要创建并运行一个会话,在此之前,可以先定义初始化所有变量的操作init:

fbdd01a71b92dc0ce7a5d813f659837e9885b332

第一步,在session.run()中调用init完成初始化操作。随后我们通过向feed_dict“喂”数据来运行train_op。迭代完成之后,我们打印出最终的w值,应该接近3。

练习

如果你又新建了一个会话,会输出什么结果呢?

5e613eabe85b86a6c03b4238379d4c324be24b32

将会输出0.0, 这就是符号计算(symbolic computation)的思想, 一旦脱离了之前的会话,所有的操作都不复存在。


原文发布时间为:2017-12-20

本文作者:ANKIT SACHAN

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关文章
|
7月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
447 0
|
4月前
|
自然语言处理 C# 开发者
Uno Platform多语言开发秘籍大公开:轻松驾驭全球用户,一键切换语言,让你的应用成为跨文化交流的桥梁!
【8月更文挑战第31天】Uno Platform 是一个强大的开源框架,允许使用 C# 和 XAML 构建跨平台的原生移动、Web 和桌面应用程序。本文详细介绍如何通过 Uno Platform 创建多语言应用,包括准备工作、设置多语言资源、XAML 中引用资源、C# 中加载资源以及处理语言更改。通过简单的步骤和示例代码,帮助开发者轻松实现应用的国际化。
47 1
|
4月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
66 0
|
4月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
115 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】TensorFlow简介,应用场景,使用方法以及项目实践及案例分析,附带源代码
TensorFlow是由Google Brain团队开发的开源机器学习库,广泛用于各种复杂的数学计算,特别是涉及深度学习的计算。它提供了丰富的工具和资源,用于构建和训练机器学习模型。TensorFlow的核心是计算图(Computation Graph),这是一种用于表示计算流程的图结构,由节点(代表操作)和边(代表数据流)组成。
99 0
|
7月前
|
机器学习/深度学习 自然语言处理 TensorFlow
构建高效的机器学习模型:基于Python和TensorFlow的实践
构建高效的机器学习模型:基于Python和TensorFlow的实践
86 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
TensorFlow在自然语言处理中的实践
【4月更文挑战第17天】本文探讨了TensorFlow在自然语言处理(NLP)中的应用,包括文本预处理、特征表示、模型构建、训练与评估。TensorFlow提供工具简化文本预处理,如`tf.text`模块进行分词。利用`Tokenizer`和`to_categorical`进行特征表示。通过`Embedding`、`LSTM`等构建模型,并用`model.fit`和`model.evaluate`训练及评估。实践中,可借助预训练词嵌入、序列填充、注意力机制和迁移学习提升性能。TensorFlow为NLP任务提供了高效解决方案,未来潜力无限。
|
7月前
|
机器学习/深度学习 PyTorch TensorFlow
NumPy与TensorFlow/PyTorch的集成实践
【4月更文挑战第17天】本文探讨了NumPy与主流深度学习框架TensorFlow和PyTorch的集成实践,阐述了它们如何通过便捷的数据转换提升开发效率和模型性能。在TensorFlow中,NumPy数组可轻松转为Tensor,反之亦然,便于原型设计和大规模训练。PyTorch的张量与NumPy数组在内存中共享,实现无缝转换。尽管集成带来了性能和内存管理的考量,但这种结合为机器学习流程提供了强大支持,促进了AI技术的发展。
|
7月前
|
机器学习/深度学习 PyTorch TensorFlow
【TensorFlow】TF介绍及代码实践
【4月更文挑战第1天】TF简介及代码示例学习
103 0
|
TensorFlow 算法框架/工具 异构计算
YOLO实践应用之搭建开发环境(Windows系统、Python 3.8、TensorFlow2.3版本)
基于YOLO进行物体检测、对象识别,先和大家分享如何搭建开发环境,会分为CPU版本、GPU版本的两种开发环境,本文会分别详细地介绍搭建环境的过程。主要使用TensorFlow2.3、opencv-python4.4.0、Pillow、matplotlib 等依赖库。
320 0

热门文章

最新文章