Android 自定义线程池的实战

简介: 前言:在上一篇文章中我们讲到了AsyncTask的基本使用、AsyncTask的封装、AsyncTask 的串行/并行线程队列、自定义线程池、线程池的快速创建方式。 对线程池不了解的同学可以先看 Android AsyncTask 深度理解、简单封装、任务队列分析、自定义线程池    --...
前言:在上一篇文章中我们讲到了AsyncTask的基本使用、AsyncTask的封装、AsyncTask 的串行/并行线程队列、自定义线程池、线程池的快速创建方式。

对线程池不了解的同学可以先看 Android AsyncTask 深度理解、简单封装、任务队列分析、自定义线程池 

 

-------------------------------------------------------------------------------------------------------

1、Executor 简介

     在Java 5之后,并发编程引入了一堆新的启动、调度和管理线程的API。Executor框架便是Java 5中引入的,其内部使用了线程池机制,它在java.util.cocurrent 包下,通过该框架来控制线程的启动、执行和关闭,可以简化并发编程的操作。因此,在Java 5之后,通过Executor来启动线程比使用Thread的start方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免this逃逸问题——如果我们在构造器中启动一个线程,因为另一个任务可能会在构造器结束之前开始执行,此时可能会访问到初始化了一半的对象用Executor在构造器中。

   Executor框架包括:线程池,Executor,Executors,ExecutorService,CompletionService,Future,Callable等。

   在java代码中 Executor是一个接口,只有一个方法。

public interface Executor {

    /**
     * Executes the given command at some time in the future.  The command
     * may execute in a new thread, in a pooled thread, or in the calling
     * thread, at the discretion of the {@code Executor} implementation.
     *
     * @param command the runnable task
     * @throws RejectedExecutionException if this task cannot be
     * accepted for execution
     * @throws NullPointerException if command is null
     */
    void execute(Runnable command);
}

  

2、ExecutorService 

     ExecutorService 是一个接口,继承 Executor ,除了有execute( Runnable command) 方法外,还拓展其他的方法:    

public interface ExecutorService extends Executor {

}
  • void shutdown();
  • List<Runnable> shutdownNow();
  • boolean isShutdown();
  • boolean isTerminated();
  • boolean awaitTermination(long timeout, TimeUnit unit)
    throws InterruptedException;
  • <T> Future<T> submit(Callable<T> task);             //提交一个任务
  • <T> Future<T> submit(Runnable task, T result);      //提交一个任务
  • Future<?> submit(Runnable task);                    //提交一个任务
  • <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
    throws InterruptedException;
  • <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
    long timeout, TimeUnit unit)
    throws InterruptedException;
  • <T> T invokeAny(Collection<? extends Callable<T>> tasks)
    throws InterruptedException, ExecutionException;
  • <T> T invokeAny(Collection<? extends Callable<T>> tasks,
    long timeout, TimeUnit unit)
    throws InterruptedException, ExecutionException, TimeoutException;

   2.1 execute(Runnable)

        接收一个 java.lang.Runnable 对象作为参数,并且以异步的方式执行它。如下是一个使用 ExecutorService 执行 Runnable 的例子

package com.app;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ExecutorTest {
	
	public static void main(String[] args) {
		
		//创建一个线程数固定大小为10的线程池
		ExecutorService executorService = Executors.newFixedThreadPool( 10 ) ;
		
		//执行一个任务  该任务是 new Runnable() 对象
		executorService.execute( new Runnable() {
			
			@Override
			public void run() {
              Log.d( Thread.currentThread().getName() );				
			}
		});
		
		//关闭线程池
		executorService.shutdown();

	}
}

  结果:

pool-1-thread-1

     使用这种方式没有办法获取执行 Runnable 之后的结果,如果你希望获取运行之后的返回值,就必须使用 接收 Callable 参数的 execute() 方法,后者将会在下文中提到。

 

     2.2、submit(Runnable)

        方法 submit(Runnable) 同样接收一个 Runnable 的实现作为参数,但是会返回一个 Future 对象。这个 Future 对象可以用于判断 Runnable 是否结束执行。如下是一个 ExecutorService 的 submit() 方法的例子:

package com.app;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ExecutorTest {
	public static void main(String[] args) {

		//创建一个线程数固定大小为10的线程池
		ExecutorService executorService = Executors.newFixedThreadPool( 10 ) ;

		//执行一个任务  该任务是 new Runnable() 对象
		Future future = executorService.submit( new Runnable() {
			@Override
			public void run() {
				Log.d( Thread.currentThread().getName() );	

			}
		});

		try {
			//如果任务结束执行则返回 null
			Log.d( ""+ future.get() );	
		} catch (Exception e) {
			e.printStackTrace();
		} 

		//关闭线程池
		executorService.shutdown();

	}
}

  结果:

pool-1-thread-1
null

   

     2.3 submit(Callable)

       方法 submit(Callable) 和方法 submit(Runnable) 比较类似,但是区别则在于它们接收不同的参数类型。Callable 的实例与 Runnable 的实例很类似,但是 Callable 的 call() 方法可以返回壹個结果。方法 Runnable.run() 则不能返回结果。

      Callable 的返回值可以从方法 submit(Callable) 返回的 Future 对象中获取。如下是一个 ExecutorService Callable 的例子:

package com.app;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ExecutorTest {
	public static void main(String[] args) {

		//创建一个线程数固定大小为10的线程池
		ExecutorService executorService = Executors.newFixedThreadPool( 10 ) ;

		//执行一个任务  该任务是 new Callable() 对象
		Future future  = executorService.submit( new Callable<String>() {

			@Override
			public String call() throws Exception {
				return "执行完了" ;
			}
		}) ;
	
		try {
			//如果任务结束执行则返回 
			Log.d( "结果是: "+ future.get() );	
		} catch (Exception e) {
			e.printStackTrace();
		} 

		//关闭线程池
		executorService.shutdown();

	}
}

  结果:

结果是: 执行完了

 

   2.4、inVokeAny()

       方法 invokeAny() 接收一个包含 Callable 对象的集合作为参数。调用该方法不会返回 Future 对象,而是返回集合中某一个 Callable 对象的结果,而且无法保证调用之后返回的结果是哪一个 Callable,只知道它是这些 Callable 中一个执行结束的 Callable 对象。如果一个任务运行完毕或者抛出异常,方法会取消其它的 Callable 的执行。

package com.app;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ExecutorTest {
	public static void main(String[] args) {

		//创建一个线程数固定大小为10的线程池
		ExecutorService executorService = Executors.newFixedThreadPool( 10 ) ;


		List<Callable<String>> list = new ArrayList<>() ;
		
		//创建第一个 Callable
		Callable<String> callable1 = new Callable<String>() {

			@Override
			public String call() throws Exception {
				Log.d( "callable 1 线程是: "+ Thread.currentThread().getName()  );	
				return "执行完了 callable 1" ;
			}
		};
		
		//创建第二个 Callable
		Callable<String> callable2 = new Callable<String>() {

			@Override
			public String call() throws Exception {
				Log.d( "callable 2 线程是: "+ Thread.currentThread().getName()  );	
				return "执行完了 callable 2" ;
			}
		};
		
		list.add( callable1 ) ;
		list.add( callable2 ) ;
		
		try {
		 String result = executorService.invokeAny( list ) ;
		 Log.d( "结果是: "+ result  );	
		} catch (InterruptedException e1) {
			
			e1.printStackTrace();
		} catch (ExecutionException e1) {
			e1.printStackTrace();
		}
	
		//关闭线程池
		executorService.shutdown();

	}
}

  结果:

callable 1 线程是: pool-1-thread-1

callable 2 线程是: pool-1-thread-2
结果是: 执行完了 callable 2

     总结:

       1、可以看到 Callable 里面的call方法,都是在子线程中运行的,

         2、 executorService.invokeAny( list ) ;返回值是任意一个 Callable 的返回值 。具体是哪一个,每个都有可能。

 

    2.5、invokeAll()

 方法 invokeAll() 会调用存在于参数集合中的所有 Callable 对象,并且返回一个包含 Future 对象的集合,你可以通过这个返回的集合来管理每个 Callable 的执行结果。需要注意的是,任务有可能因为异常而导致运行结束,所以它可能并不是真的成功运行了。但是我们没有办法通过 Future 对象来了解到这个差异。

package com.app;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ExecutorTest {
	public static void main(String[] args) {

		//创建一个线程数固定大小为10的线程池
		ExecutorService executorService = Executors.newFixedThreadPool( 10 ) ;


		List<Callable<String>> list = new ArrayList<>() ;

		//创建第一个 Callable
		Callable<String> callable1 = new Callable<String>() {

			@Override
			public String call() throws Exception {
				Log.d( "callable 1 线程是: "+ Thread.currentThread().getName()  );	
				return "执行完了 callable 1" ;
			}
		};

		//创建第二个 Callable
		Callable<String> callable2 = new Callable<String>() {

			@Override
			public String call() throws Exception {
				Log.d( "callable 2 线程是: "+ Thread.currentThread().getName()  );	
				return "执行完了 callable 2" ;
			}
		};

		list.add( callable1 ) ;
		list.add( callable2 ) ;


		List<Future<String>> result;
		try {
			result = executorService.invokeAll( list );

			for (Future<String> future : result) {
				Log.d( "结果是: "+ future.get()  );	
			}	
		} catch (Exception e) {
			e.printStackTrace();
		}

		//关闭线程池
		executorService.shutdown();

	}
}

  结果

callable 1 线程是: pool-1-thread-1
callable 2 线程是: pool-1-thread-2
结果是: 执行完了 callable 1
结果是: 执行完了 callable 2

    注意:1:Callable 的call方法都是执行在子线程中的

            2: executorService.invokeAll( list ) 是返回值。 但是必须是所有的 Callable对象执行完了,才会返回,返回值是一个list, 顺序和 List<Callable>一样 。在执行的过程中,如果任何一个Callable发生异常,程序会崩溃,没有返回值。

       

     2.6 如何关闭 ExecuteService 服务 ?

当使用 ExecutorService 完毕之后,我们应该关闭它,这样才能保证线程不会继续保持运行状态。 举例来说,如果你的程序通过 main() 方法启动,并且主线程退出了你的程序,如果你还有一个活动的 ExecutorService 存在于你的程序中,那么程序将会继续保持运行状态。存在于 ExecutorService 中的活动线程会阻Java虚拟机关闭。 

为了关闭在 ExecutorService 中的线程,你需要调用 shutdown() 方法。ExecutorService 并不会马上关闭,而是不再接收新的任务,一旦所有的线程结束执行当前任务,ExecutorServie 才会真的关闭。所有在调用 shutdown() 方法之前提交到 ExecutorService 的任务都会执行。 
如果你希望立即关闭 ExecutorService,你可以调用 shutdownNow() 方法。这个方法会尝试马上关闭所有正在执行的任务,并且跳过所有已经提交但是还没有运行的任务。但是对于正在执行的任务,是否能够成功关闭它是无法保证 的,有可能他们真的被关闭掉了,也有可能它会一直执行到任务结束。这是一个最好的尝试。 

 

相关文章
|
2月前
|
并行计算 Java 数据处理
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
223 0
|
1月前
|
缓存 前端开发 Android开发
安卓开发中的自定义视图:从零到英雄
【10月更文挑战第42天】 在安卓的世界里,自定义视图是一块画布,让开发者能够绘制出独一无二的界面体验。本文将带你走进自定义视图的大门,通过深入浅出的方式,让你从零基础到能够独立设计并实现复杂的自定义组件。我们将探索自定义视图的核心概念、实现步骤,以及如何优化你的视图以提高性能和兼容性。准备好了吗?让我们开始这段创造性的旅程吧!
26 1
|
21天前
|
Java 调度 Android开发
安卓与iOS开发中的线程管理差异解析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自拥有独特的魅力。如同东西方文化的差异,它们在处理多线程任务时也展现出不同的哲学。本文将带你穿梭于这两个平台之间,比较它们在线程管理上的核心理念、实现方式及性能考量,助你成为跨平台的编程高手。
|
25天前
|
API Android开发 iOS开发
深入探索Android与iOS的多线程编程差异
在移动应用开发领域,多线程编程是提高应用性能和响应性的关键。本文将对比分析Android和iOS两大平台在多线程处理上的不同实现机制,探讨它们各自的优势与局限性,并通过实例展示如何在这两个平台上进行有效的多线程编程。通过深入了解这些差异,开发者可以更好地选择适合自己项目需求的技术和策略,从而优化应用的性能和用户体验。
|
1月前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
52 6
|
1月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
1月前
|
搜索推荐 前端开发 Android开发
安卓应用开发中的自定义视图实现
【10月更文挑战第30天】在安卓开发的海洋中,自定义视图是那抹不可或缺的亮色,它为应用界面的个性化和交互体验的提升提供了无限可能。本文将深入探讨如何在安卓平台创建自定义视图,并展示如何通过代码实现这一过程。我们将从基础出发,逐步引导你理解自定义视图的核心概念,然后通过一个实际的代码示例,详细讲解如何将理论应用于实践,最终实现一个美观且具有良好用户体验的自定义控件。无论你是想提高自己的开发技能,还是仅仅出于对安卓开发的兴趣,这篇文章都将为你提供价值。
|
1月前
|
Android开发 开发者 UED
安卓开发中自定义View的实现与性能优化
【10月更文挑战第28天】在安卓开发领域,自定义View是提升应用界面独特性和用户体验的重要手段。本文将深入探讨如何高效地创建和管理自定义View,以及如何通过代码和性能调优来确保流畅的交互体验。我们将一起学习自定义View的生命周期、绘图基础和事件处理,进而探索内存和布局优化技巧,最终实现既美观又高效的安卓界面。
38 5
|
2月前
|
缓存 前端开发 Android开发
Android实战之如何截取Activity或者Fragment的内容?
本文首发于公众号“AntDream”,介绍了如何在Android中截取Activity或Fragment的屏幕内容并保存为图片。包括截取整个Activity、特定控件或区域的方法,以及处理包含RecyclerView的复杂情况。
27 3
|
2月前
|
调度 Android开发 开发者
构建高效Android应用:探究Kotlin多线程优化策略
【10月更文挑战第11天】本文探讨了如何在Kotlin中实现高效的多线程方案,特别是在Android应用开发中。通过介绍Kotlin协程的基础知识、异步数据加载的实际案例,以及合理使用不同调度器的方法,帮助开发者提升应用性能和用户体验。
64 4