[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势

简介: 设有一均匀分布着电荷的无限长直线, 其上的电荷线密度 (即单位长度上的电荷量) 为 $\sigma$. 试求该直线所形成的电场的电场强度及电势. 解答: 设空间上点 $P$ 到直线的距离为 $r$, 以垂足为原点 $O$, $\vec{OP}$ 方向为 $x$ 轴正方向建立直角坐标系, 则有 $$...

设有一均匀分布着电荷的无限长直线, 其上的电荷线密度 (即单位长度上的电荷量) 为 $\sigma$. 试求该直线所形成的电场的电场强度及电势.

解答: 设空间上点 $P$ 到直线的距离为 $r$, 以垂足为原点 $O$, $\vec{OP}$ 方向为 $x$ 轴正方向建立直角坐标系, 则有 $$\beex \bea  {\bf E}(P)&=\cfrac{\sigma}{4\pi \ve_0} \int_{-\infty}^{+\infty} \cfrac{(r,-x)}{(r^2+x^2)^{\frac{3}{2}}}\rd x\\ &=\cfrac{\sigma}{4\pi \ve_0}\sex{\int_{-\infty}^\infty \cfrac{r}{(r^2+x^2)^\frac{3}{2}}\rd x,0}\\ &=\cfrac{\sigma}{4\pi \ve_0}\sex{\cfrac{2}{r},0}\\ &=\sex{\cfrac{\sigma}{2\pi\ve_0r},0}. \eea \eeex$$ 电势 $$\bex \phi(P)=-\int_1^r \cfrac{\sigma}{2\pi\ve_0s}\rd s =\cfrac{\sigma}{2\pi\ve_0}\ln\cfrac{1}{r}. \eex$$ 这里取到直线距离为 $1$ 处的电势为 $0$. 

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
810 0
[物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿流线的一个守恒量
设定常 (即 $\cfrac{\p {\bf u}}{\p t}={\bf 0}$)、不可压缩 (设 $\rho=1$) 的理想流体所受的体积力仅为重力. 又设磁场满足条件: $({\bf H}\cdot\n){\bf H}={\bf 0}$.
788 0
|
资源调度 BI 算法框架/工具
[物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系   5.4.1. 本构关系的一般形式   1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\bf T}({\bf x},{\bf F}({\bf x})), \eex$$ 则称材料是 (Cauchy) 弹性的; 这里 $\hat {\bf T}$ 称为响应函数.
839 0
|
资源调度 关系型数据库 RDS
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.2 向量场过任一随流体运动的曲面的通量对时间的微式及其应用
1.  $$\bex \cfrac{\rd}{\rd t}\int_S {\bf a}\cdot{\bf n}\rd S =\int_S \sez{ \cfrac{\p {\bf a}}{\p t} +(\Div{\bf a}){\bf u}-\rot({\bf u}\times{\bf a}) }\cdot {\bf n}\rd S.
747 0
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场
设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$   证明: 不妨设 ${\bf H}=(0,0,H_3)^T$, 则 $$\bex \Div{\bf H}=0\ra \cfrac{\p H_3}{\p x_3}=0.
578 0
|
资源调度
[物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfrac{{\bf H}}{\rho}$, $\rd {\bf r}$ 满足同一线性齐次 ODE 组:...
759 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
751 0
|
资源调度 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
795 0
|
资源调度
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\b...
840 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0