[物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识

简介: 1.  理想流体: 指忽略粘性及热传导的流体.   2.  流体的状态 (运动状态及热力学状态) 的描述   (1)   速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度.

1.  理想流体: 指忽略粘性及热传导的流体.

 

2.  流体的状态 (运动状态及热力学状态) 的描述

 

(1)   速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度.

 

(2)   质量密度 $\rho$: 单位体积流体的质量.

a.  质量流向量 (动量密度向量) $\rho\bbu$;

b.  动量流张量 $\rho \bbu\otimes \bbu$;

c.  比容 $\tau=\cfrac{1}{\rho}$: 单位质量流体的体积.

 

(3)   压强 $p$: 作用在单位面积上的流体压力.

 

(4)   绝对温度 $T$: $p=f(\rho,T)$. 当 $p=R\rho T$ 时, 称为理想气体.

 

(5)   单位质量流体的内能 $e$: 由流体分子的不规则运动所具有的动能以及由于分子之间相对位置所决定的势能的总和.

 a. 当所考虑的为理想气体时, 无分子势能, 而 $e=e(T)$.

 b. 若 $e=c_VT$, 则称为多方 (polytropic) 气体, 其中 $c_V$ 为定容比热.

 c. 能量密度: $\rho e+\cfrac{1}{2}\rho u^2$: 单位体积中流体的质量.

 d. 能量流向量: $\sex{\rho e+\cfrac{1}{2}\rho u^2}\bbu$. 

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
807 0
|
机器学习/深度学习
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...
603 0
[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组     1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfra...
910 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\...
665 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
644 0
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
671 0
|
资源调度
[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1.  在流体存在粘性、热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     2.  在流体存在粘性、热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.
744 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
751 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
694 0
[物理学与PDEs]第4章 反应流体力学
[物理学与PDEs]第4章第1节 引言   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.
743 0
下一篇
无影云桌面