已知 $$\bex u(x,t)=\cfrac{1}{2}\int_0^1\rd \eta \int_{x-t+\eta}^{x+t-\eta}f(\xi,\eta)\rd \xi, \eex$$ 且 $f(\xi,\eta)$, $f_\xi(\xi,\eta)$ 连续. 试求 $\cfrac{\p ^2u}{\p t^2}-\cfrac{\p ^2u}{\p x^2}$.
已知 $$\bex u(x,t)=\cfrac{1}{2}\int_0^1\rd \eta \int_{x-t+\eta}^{x+t-\eta}f(\xi,\eta)\rd \xi, \eex$$ 且 $f(\xi,\eta)$, $f_\xi(\xi,\eta)$ 连续. 试求 $\cfrac{\p ^2u}{\p t^2}-\cfrac{\p ^2u}{\p x^2}$.