设 $a_n>0$, $S_n=a_1+a_2+\cdots+a_n$, 级数 $\dps{\vsm{n}a_n}$ 发散, 证明: $\dps{\vsm{n}\cfrac{a_n}{S_n}}$ 发散.
证明: 对任意固定的 $n$, 由 $S_{n+p}\to \infty\ (p\to\infty)$ 知 $$\bex \exists\ p,\st \cfrac{S_n}{S_{n+p}}<\cfrac{1}{2}. \eex$$ 而 $$\bex \sum_{k=n+1}^{n+p}\cfrac{a_k}{S_k}\geq \cfrac{S_{n+p}-S_n}{S_{n+p}} =1-\cfrac{S_n}{S_{n+p}}\geq \cfrac{1}{2}. \eex$$