赣南师范学院数学竞赛培训第03套模拟试卷参考解答

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 1. 计算下列定积分: (1) $\dps{\int_{-\pi}^\pi \frac{x\sin x \arctan e^x}{1+\cos^2x}\rd x}$; (2) $\dps{\int_{\frac{1}{2}}^2 \sex{1+x-\frac{1}{x}}e^{x+\frac{1}{x}}\rd x}$.

1. 计算下列定积分: (1) $\dps{\int_{-\pi}^\pi \frac{x\sin x \arctan e^x}{1+\cos^2x}\rd x}$; (2) $\dps{\int_{\frac{1}{2}}^2 \sex{1+x-\frac{1}{x}}e^{x+\frac{1}{x}}\rd x}$.

解答: $$\beex \bea &\quad\int_{-\pi}^\pi \frac{x\sin x \arctan e^x}{1+\cos^2x}\rd x =\int_{-\pi}^\pi\frac{-t\sin (-t)\arctan e^{-t}}{1+\cos^2(-t)}\rd (-t)\quad(x=-t)\\ &=\int_{-\pi}^\pi \frac{x\sin x\arctan e^{-x}}{1+\cos^2x}\rd x =\frac{1}{2}\int_{-\pi}^\pi \frac{x\sin x}{1+\cos^2x}[\arctan e^x+\arctan e^{-x}]\rd x\\ &=\frac{\pi}{4}\int_{-\pi}^\pi\frac{x\sin x}{1+\cos^2x}\rd x \quad\sex{y(t)=\arctan t+\arctan t^{-1}\ra y'(t)=0\ra y(t)=y(1)=\frac{\pi}{2}}\\ &=\frac{\pi}{4} \sez{\int_{-\pi}^0\frac{x\sin x}{1+\cos^2x}\rd x +\int_0^\pi\frac{x\sin x}{1+\cos^2x}\rd x}\\ &=\frac{\pi}{4} \sez{ \int_0^\pi\frac{(t-\pi)\sin(t-\pi)}{1+\cos^2(t-\pi)}\rd t +\int_0^\pi\frac{x\sin x}{1+\cos^2x}\rd x }\quad\sex{x+\pi=t}\\ &=\frac{\pi^2}{4}\int_0^\pi \frac{\sin x}{1+\cos^2x}\rd x =\frac{\pi^2}{4}\arctan(\cos x)|_0^\pi =\frac{\pi^3}{8}. \eea \eeex$$ (2) $$\beex \bea \int_{\frac{1}{2}}^2 \sex{1+x-\frac{1}{x}}e^{x+\frac{1}{x}}\rd x &=\int_\frac{1}{2}^2 \sez{\sex{1+x}\sex{1-\frac{1}{x^2}}+\frac{1}{x^2}}e^{x+\frac{1}{x}}\rd x\\ &=\int_{\frac{1}{2}}^2 (1+x)\rd e^{x+\frac{1}{x}} +\int_{\frac{1}{2}}^2 \frac{1}{x^2}e^{x+\frac{1}{x}}\rd x\\ &=\frac{3}{2}e^{\frac{5}{2}} -\int_{\frac{1}{2}}^2 e^{x+\frac{1}{x}}\rd x +\int_{\frac{1}{2}}^2 \frac{1}{x^2}e^{x+\frac{1}{x}}\rd x\\ &=\frac{3}{2}e^{\frac{5}{2}} -\int_{\frac{1}{2}}^2 \rd e^{x+\frac{1}{x}}\\ &=\frac{3}{2}e^{\frac{5}{2}}. \eea \eeex$$

 

2. 设当 $x>-1$ 时, 可微函数 $f(x)$ 满足条件 $$\bex f'(x)+f(x)-\cfrac{1}{x+1}\int_0^x f(t)\rd t=0, \eex$$ 且 $f(0)=1$. 试证: 当 $x\geq 0$ 时, $$\bex e^{-x}\leq f(x)\leq 1. \eex$$

证明: $$\beex \bea &\quad f'(x)+f(x)-\cfrac{1}{x+1}\int_0^x f(t)\rd t=0\\ &\ra f'(x)+f(0)+\int_0^x f'(s)\rd s -\cfrac{1}{x+1}\int_0^x \sez{f(0)+\int_0^t f'(s)\rd s}\rd t=0\\ &\ra f'(x)+1+\int_0^x f'(s)\rd s -\cfrac{x}{x+1}-\cfrac{1}{x+1}\int_0^x (x-s)f'(s)\rd s=0\\ &\ra f'(x)+\cfrac{1}{x+1}+\cfrac{1}{x+1}\int_0^x (s+1)f'(s)\rd s=0\\ &\ra (x+1)f'(x)+1+\int_0^x(s+1)f'(s)\rd s=0\\ &\ra F'(x)+1+F(x)=0\quad \sex{F(x)=\int_0^x (s+1)f'(s)\rd s}\\ &\ra [e^xF(x)]'=-e^x\\ &\ra e^xF(x)=1-e^x\\ &\ra F(x)=e^{-x}-1\\ &\ra (x+1)f'(x)=-e^{-x}\\ &\ra f'(x)=-\cfrac{e^{-x}}{x+1}\\ &\ra -e^{-x}\leq f'(x)\leq 0\\ &\ra e^{-x}\leq f(x)=f(0)+\int_0^xf'(t)\rd t\leq 1. \eea \eeex$$

 

3. 设 $f:[0,1]\to [-a,b]$ 连续, 且 $\dps{\int_0^1 f^2(x)\rd x=ab}$. 试证: $$\bex 0\leq \frac{1}{b-a}\int_0^1 f(x)\rd x\leq \frac{1}{4}\sex{\frac{a+b}{a-b}}^2. \eex$$

证明: 对 $\forall\ 0\leq c\leq b$, $$\bex -a-c\leq f(x)-c\leq b-c. \eex$$ 而 $$\bex 0\leq |f(x)-c|\leq \max\sed{a+c,b-c}. \eex$$ 取 $c=\cfrac{b-a}{2}$, 则 $$\beex \bea 0&\leq \sev{f(x)-\cfrac{b-a}{2}}\leq \cfrac{a+b}{2},\\ 0&\leq \int_0^1 \sev{f(x)-\cfrac{b-a}{2}}^2\rd x\leq \cfrac{(a+b)^2}{4},\\ 0&\leq ab-(b-a)\int_0^1 f(x)\rd x+\cfrac{(b-a)^2}{4}\leq \cfrac{(a+b)^2}{4},\\ 0&=\cfrac{ab+\cfrac{(b-a)^2}{4}-\cfrac{(a+b)^2}{4}}{b-a}\leq \int_0^1 f(x)\rd x \leq \cfrac{ab+\cfrac{(b-a)^2}{4}}{b-a}=\cfrac{(a+b)^2}{4(b-a)}. \eea \eeex$$

 

4. 求极限: $$\bex \vlm{n}\sez{\sqrt{n}\sex{\sqrt{n+1}-\sqrt{n}}+\cfrac{1}{2}}^{\cfrac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}}. \eex$$

解答: $$\beex \bea \mbox{原极限} &=\vlm{n}\sez{\cfrac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}+\cfrac{1}{2}} ^{(\sqrt{n+1}+\sqrt{n})^2}\\ &=\exp\sez{\vlm{n} (\sqrt{n+1}+\sqrt{n})^2\ln \sex{\cfrac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}+\cfrac{1}{2}} }\\ &=\exp\sez{\vlm{n} \cfrac{\ln \sex{\cfrac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}+\cfrac{1}{2}}} {(\sqrt{n+1}-\sqrt{n})^2} }\\ &=\exp\sez{\vlm{n} \cfrac{\cfrac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}-\cfrac{1}{2}} {(\sqrt{n+1}-\sqrt{n})^2} }\quad\sex{\ln(1+x)\sim x\ (x\to 0)}\\ &=\exp\sez{\vlm{n} \cfrac{ \cfrac{\sqrt{n}-\sqrt{n+1}}{2(\sqrt{n+1}+\sqrt{n})} }{ (\sqrt{n+1}-\sqrt{n})^2 } }\\ &=e^{-\frac{1}{2}}. \eea \eeex$$

 

5. 设 $a_1,\cdots,a_n$ 为非负实数. 试证: $$\bex \sev{\sum_{k=1}^n a_k\sin kx}\leq \sev{\sin x},\quad \forall\ x\in\bbR \eex$$ 的充分必要条件是 $$\bex \sum_{k=1}^n ka_k\leq 1. \eex$$

证明: $\ra$: $$\beex \bea 1&\geq \lim_{x\to 0}\sev{\cfrac{\sum_{k=1}^n a_k\sin kx}{\sin x}}\\ &=\sev{\sum_{k=1}^n a_k\lim_{x\to 0} \cfrac{\sin kx}{\sin x}}\\ &=\sev{\sum_{k=1}^n ka_k}. \eea \eeex$$ $\la$: 先用数学归纳法证明 $$\bex |\sin kx|\leq k|\sin x|,\quad \forall\ x\in\bbR. \eex$$ 当 $k=1$ 时, 结论显然成立. 假设当 $k=n$ 时结论成立, 则 $$\beex \bea |\sin (n+1)x|&=|\sin nx\cos x+\cos nx\sin x|\\ &\leq n|\sin x|+|\sin x|\\ &=(n+1)|\sin x|. \eea \eeex$$ 往证充分性: $$\beex \bea \sev{\sum_{k=1}^n a_k\sin kx} &\leq \sum_{k=1}^n a_k|\sin kx|\\ &\leq \sum_{k=1}^n ka_k|\sin x|\\ &\leq |\sin x|. \eea \eeex$$

 

6. 设 $f(x)$ 在 $[-1,1]$ 上二阶连续可微, 试证: 存在 $\xi\in (-1,1)$ 使得 $$\bex \int_{-1}^1 xf(x)\rd x=\cfrac{2}{3}f''(\xi)+\cfrac{1}{3}\xi f''(\xi). \eex$$

证明: 仅须证明 $$\bex \int_{-1}^1 xf(x)\rd x=(xf(x))''|_{x=\xi}. \eex$$ 为此, 记 $g(x)=xf(x)$, 则 $g(0)=0$, $g'(0)=f(0)$. 于是 $$\beex \bea g(x)&=\int_0^x g'(t)\rd t\\ &=\int_0^x \sez{f(0)+\int_0^t g''(s)\rd s}\rd t\\ &=f(0)x+\int_0^x \int_0^t g''(s)\rd s\rd t. \eea \eeex$$ 积分而有 $$\beex \bea \int_{-1}^1 g(x)\rd x &=\int_{-1}^1 \int_0^x \int_0^t g''(s)\rd s\rd t\rd x\\ &=\iiint_\Omega g''(s)\rd s\rd t\rd x\\ &\quad\sex{\Omega=\sed{(x,t,s);\ {{0\leq x\leq 1,\ 0\leq t\leq x,\ 0\leq s\leq t}\atop{-1\leq x\leq 0,\ -x\leq t\leq 0,\ -t\leq s\leq 0}}}}\\ &=g''(\xi)|\Omega|\\ &=g''(\xi)\cdot 2\int_0^1 \rd x\int_0^x \rd t\int_0^t\rd s\\ &=\frac{1}{3}g''(\xi). \eea \eeex$$

 

7. 已知 $f(x)$ 在 $[0,1]$ 上三阶可导, 且 $$\bex f(0)=-1,\quad f(1)=0,\quad f'(0)=0. \eex$$ 试证: $$\bex \forall\ x\in (0,1),\ \exists\ \xi\in (0,1),\st f(x)=-1+x^2+\cfrac{x^2(x-1)}{3!}f'''(\xi). \eex$$

证明: 令 $$\bex F(t)=f(t)+1-t^2-\cfrac{f(x)+1-x^2}{x^2(x-1)}t^2(t-1), \eex$$ 则 $F(0)=F(x)=F(1)=0$. 由 Rolle 定理, $$\bex \exists\ 0<\eta<x<\zeta<1,\st F'(\eta)=F'(\zeta)=0. \eex$$ 又 $F'(0)=0$, 对条件 $$\bex F'(0)=F'(\eta)=F'(\zeta)=0 \eex$$ 应用 Rolle 定理两次后即可发现 $$\bex \exists\ \xi\in (0,1),\st F'''(\xi)=0. \eex$$

 

8. 设 $f(x)$ 在 $[0,1]$ 上连续, 试证: $$\bex \sev{\int_0^1 \cfrac{f(x)}{t^2+x^2}\rd x}^2\leq \cfrac{\pi}{2t}\int_0^1 \cfrac{f^2(x)}{t^2+x^2}\rd x,\quad t>0. \eex$$

证明: $$\beex \bea LHS&=\sez{\int_0^1 \cfrac{f(x)}{\sqrt{t^2+x^2}}\cdot \cfrac{1}{\sqrt{t^2+x^2}}\rd x}^2\\ &\leq \int_0^1 \cfrac{f^2(x)}{t^2+x^2}\rd x\cdot \int_0^1 \cfrac{1}{t^2+x^2}\rd x\\ &\leq \int_0^1 \cfrac{f^2(x)}{t^2+x^2}\rd x\cdot \cfrac{1}{t} \int_0^\infty \cfrac{1}{1+\sex{\cfrac{x}{t}}^2}\rd \cfrac{x}{t}\\ &\leq RHS. \eea \eeex$$

 

9. 设 $f(x)$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=f(1)=0$. 试证: 对任意正数 $a,b$, 均存在不同的两点 $\xi,\eta\in (0,1)$, 使得 $$\bex \cfrac{a}{f'(\xi)}+\cfrac{b}{f'(\eta)}=a+b. \eex$$

证明: 由介值定理, $$\bex \exists\ \zeta\in(0,1),\st f(\zeta)=\cfrac{a}{a+b}. \eex$$ 又由 Lagrange 中值定理, $$\beex \bea \exists\ \xi\in(0,\zeta),\st &f'(\xi)=\cfrac{f(\zeta)-f(0)}{\zeta-0}=\cfrac{a}{(a+b)\zeta},\\ \exists\ \eta\in (\zeta,1),\st &f'(\eta)=\cfrac{f(1)-f(\zeta)}{1-\zeta}=\cfrac{b}{(a+b)(1-\zeta)}. \eea \eeex$$ 于是 $$\bex \cfrac{a}{f'(\xi)}+\cfrac{b}{f'(\zeta)} =(a+b)\zeta+(a+b)(1-\zeta)=a+b. \eex$$ 

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
存储 缓存 测试技术
微服务注册中心的原理和实现方式
【2月更文挑战第19天】注册中心可以说是实现服务化的关键,因为服务化之后,服务提供者和服务消费者不在同一个进程中运行,实现了解耦,这就需要一个纽带去连接服务提供者和服务消费者,而注册中心就正好承担了这一角色。
|
8月前
|
机器学习/深度学习 机器人
《解密奖励函数:引导智能体走向最优策略》
在强化学习中,奖励函数是核心要素,指导智能体学习与决策。它通过明确目标、合理分配奖励和考虑环境因素,激励智能体探索最优策略。设计恰当的奖励函数能让智能体在复杂环境中不断优化行为,实现长期目标。即时、延迟和全局奖励的不同类型,以及奖励函数的稳定性和适应性,都是设计时需关注的重点。
302 13
|
8月前
|
存储 人工智能 安全
函数计算助您 7 分钟极速部署开源对话大模型
本方案利用函数计算的无服务器架构,您可以在函数计算控制台选择魔搭(ModelScope)开源大模型应用模板;同时,我们将利用文件存储 NAS ,为应用服务所需的大模型和相关文件提供一个安全的存储环境;最终通过访问提供的域名进行模型的调用与验证。仅需三步,即可玩转目前热门 AI 大模型。
|
12月前
|
SQL 监控 小程序
在微信小程序中使用 Vant 时如何防止 SQL 注入攻击?
在微信小程序中使用 Vant 时如何防止 SQL 注入攻击?
377 58
|
10月前
|
监控 前端开发 JavaScript
React 静态网站生成工具 Next.js 入门指南
【10月更文挑战第20天】Next.js 是一个基于 React 的服务器端渲染框架,由 Vercel 开发。本文从基础概念出发,逐步探讨 Next.js 的常见问题、易错点及解决方法,并通过具体代码示例进行说明,帮助开发者快速构建高性能的 Web 应用。
446 10
|
机器学习/深度学习 数据可视化 算法
图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取
本文详细介绍了如何利用NetworkX库从图结构中提取重要特征。首先,通过定义辅助函数设置了图的可视化选项,并以Zachary网络数据集为例进行了可视化展示。接着,文章深入探讨了三类图特征:基于节点的特征(如节点度、中心性等)、基于边的特征(如最短路径、邻域重叠等)以及基于图的特征(如Graphlets、Weisfeiler-Leman特征等)。通过这些特征的提取与分析,可以全面理解网络结构,识别关键节点,分析信息流动模式,并发现潜在的隐藏模式。本文不仅展示了如何应用这些特征来揭示社交网络中的角色和联系,还强调了其在交通网络分析和生物系统研究等领域的广泛应用潜力。
468 12
图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取
|
网络协议 网络性能优化
TCP面向连接
【8月更文挑战第19天】
286 1
|
安全 关系型数据库 分布式数据库
PolarDB 的安全性和合规性措施
【8月更文第27天】随着云计算技术的不断发展,企业对云数据库的安全性和合规性的需求日益增长。阿里云的 PolarDB 作为一款高度兼容 MySQL、PostgreSQL 和 Oracle 的关系型数据库服务,提供了强大的安全保护和合规性支持。本文将详细探讨 PolarDB 如何确保数据安全,并符合各种法规要求。
396 0
|
安全 Linux 数据库
在Linux中,find命令和locate命令有什么区别?
在Linux中,find命令和locate命令有什么区别?
|
前端开发 Java 关系型数据库
「架构」分层架构
**分层架构**是软件设计的关键模式,它将应用划分为独立层,如表示层、业务逻辑层和数据访问层,强调**单一职责**和**松耦合**。优点包括**代码组织**、**技术多样性**、**团队协作**和**可扩展性**,但可能带来**性能影响**和**设计复杂性**。通过定义清晰接口和合理划分层次来管理。常用技术栈涉及Web前端、后端框架、数据库、ORM和通信协议等。
279 0