[PeterDLax著泛函分析习题参考解答]第4章 Hahn-Bananch 定理的应用

简介:   1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义的 $p$ 相等.

 

 

1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义的 $p$ 相等.

 

证明: $$\bex p(x)=\inf_{x\leq y\in Y}l(y)=\inf_{a_n\leq b_n,\sed{b_n}\in Y}\vlm{n}b_n. \eex$$ 由 $a_n\leq b_n$ 知 $$\bex \vls{n}a_n\leq \vlm{n}b_n, \eex$$ 而 $$\bex \vls{n}a_n\leq p(x). \eex$$ 另一方面, 对 $\forall\ \ve>0$, $\forall\ k$, 取 $$\bex y=(a_1,\cdots,a_k,\sup_{n\geq k}a_n+\ve,\cdots,\sup_{n\geq k}a_n+\ve,\cdots), \eex$$则 $x\leq y$, $$\bex p(x)\leq l(y)=\sup_{n\geq k}a_n+\ve. \eex$$ 对 $k$ 取下确界即有 $$\bex p(x)\leq \vls{n}a_n+\ve. \eex$$ 再由 $\ve>0$ 的任意性, $$\bex p(x)\leq \vls{n}a_n. \eex$$

 

2. 证明: 我们可以选择一个 Banach 极限, 使得对任意的 Cesaro 可加和的有界数列 $\sed{c_1,c_2,\cdots}$, 均有 $$\bex \LIM_{n\to\infty}c_n=c, \eex$$ 即其部分和的算术平均收敛到 $c$.

 

证明: 设 $Z$ 是所有 Cesaro 可加和的有界实数列构成的线性空间, 对 $$\bex z=(c_1,c_2,\cdots)\in Z, \eex$$ 定义线性泛函 $$\bex l(z)=\vlm{n}\cfrac{c_1+\cdots+c_n}{n}, \eex$$ 则 $Y\subset Z$ ($Y$ 是所有收敛数列构成的线性空间) 且 $$\bee\label{4_2_eq} y\in Y\ra l(y)=\vlm{n}b_n\quad\sex{y=(b_1,b_2,\cdots)}. \eee$$ 在 $$\beex \bea \cfrac{c_1+\cdots+c_n}{n} &=\cfrac{c_1+\cdots+c_{k-1}}{n} +\cfrac{c_k+\cdots+c_n}{n}\\ &\leq \cfrac{c_1+\cdots+c_{k-1}}{n} +\cfrac{n-k+1}{n}\sup_{n\geq k}c_n \eea \eeex$$ 中令 $n\to\infty$ 即有 $$\bex l(z)\leq \sup_{n\geq k}c_n\quad\sex{z=(c_1,c_2,\cdots)}. \eex$$ 由 $k$ 的任意性, $$\bex l(z)\leq \inf_{k\geq 1}\sup_{n\geq k}c_n=\vls{n}c_n. \eex$$ 这说明在 $B$ (所有有界实数列构成的线性空间) 的线性子空间 $Z$ 上, 线性泛函 $l$ 被 $\dps{p(z)=\vls{n}c_n}$ 所控制. 据第 3 章定理 7, $l$ 可受控延拓至整个 $B$. 注意到 \eqref{4_2_eq}, 我们知 $$\bex l(x)=\LIM_{n\to\infty}a_n\quad\sex{x=(a_1,a_2,\cdots)\in B}. \eex$$

 

3. 证明: 存在 $t\to\infty$ 的一个广义极限, 使得对定义在 $\sed{t\in\bbR;\ t\geq 0}$ 上的所有有界函数 $x(t)$, 该广义极限满足定理 3 中的性质 (i) 到 (iv).

 

证明: 设 $X$ 为定义在 $t\geq 0$ 上的所有有界函数 $x(t)$ 的全体, $$\bex Y=\sed{y\in X;\ \vlm{t}y(t)\mbox{ 存在}}. \eex$$ 定义 $$\bex l(y)=\vlm{t}y(t),\quad y\in Y. \eex$$ 则由定理 1, $l$ 可延拓至 $X$. 定义 $$\bex \LIM_{t\to\infty}x(t)=l(x),\quad x\in X, \eex$$ 则此即为所求之广义极限 (定理中的 $\dps{p(x)=\vls{t}x(t)}$).

 

 

错误指出:

 

Page 28, (20) 应为 $c_{P+\rho}={\bf A}_{-\rho}c_P$. 事实上, $$\beex \bea c_{P+\rho}(\tt)=1&\lra \tt\in P+\rho\\ &\lra \tt-\rho\in P\\ &\lra 1=c_P(\tt-\rho)={\bf A}_{-\rho}c_P(\tt). \eea \eeex$$

 

Page 28, 注记, 三维球面应改为三维空间中的球面. 

目录
相关文章
|
15天前
|
C语言
(浙大版《C语言程序设计(第3版)》 习题6-5 使用函数验证哥德巴赫猜想 (20分)
(浙大版《C语言程序设计(第3版)》 习题6-5 使用函数验证哥德巴赫猜想 (20分)
|
12月前
|
Serverless C++
C++ 用自定义函数验证高等数学的定积分例题
C++ 用自定义函数验证高等数学的定积分例题
93 0
|
C语言
浙大版《C语言程序设计(第3版)》题目集 - 习题5-7 使用函数求余弦函数的近似值(15 分)
浙大版《C语言程序设计(第3版)》题目集 - 习题5-7 使用函数求余弦函数的近似值(15 分)
191 0
基础编程题目集 - 7-18 二分法求多项式单根(20 分)
基础编程题目集 - 7-18 二分法求多项式单根(20 分)
116 0
Stolz定理 【补充知识】Stolz(斯托尔茨)定理(详解➕例题)
Stolz定理 【补充知识】Stolz(斯托尔茨)定理(详解➕例题)
456 0
Stolz定理 【补充知识】Stolz(斯托尔茨)定理(详解➕例题)
|
监控 JavaScript 程序员
《编程珠玑(续)(修订版)》—第1章1.1节计算素数
听诊器是一种简单工具,却给医生的工作带来了革命:它让内科医生能有效地监控病人的身体。性能监视工具(profiler)对程序起着同样的作用。
1510 0
[再寄小读者之数学篇](2014-11-24 积分中值定理)
积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理.
658 0
|
Python Perl
[PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理
1. 证明 $(10'$).   证明: $\ra$: 由 $p_K(x)
809 0
|
资源调度
[PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用
1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理.     证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_{i=1}^\infty X_i=\cup_{j=1}^\infty Y_j \eex...
567 0