[再寄小读者之数学篇](2014-10-27 无穷多个无穷小量相乘还是无穷小量么?)

简介: 无穷多个无穷小量相乘还是无穷小量么?   解答: 不一定. 比如 $$\bex \ba{ll} \mbox{第 1 个:}&1,\cfrac{1}{2},\cfrac{1}{3},\cfrac{1}{4},\cdots;\\ \mbox{第 2 个:}&1,2,\cfrac{1}{3},\cfr...

无穷多个无穷小量相乘还是无穷小量么?

 

解答: 不一定. 比如 $$\bex \ba{ll} \mbox{第 1 个:}&1,\cfrac{1}{2},\cfrac{1}{3},\cfrac{1}{4},\cdots;\\ \mbox{第 2 个:}&1,2,\cfrac{1}{3},\cfrac{1}{4},\cdots;\\ \mbox{第 3 个:}&1,1,3^2,\cfrac{1}{4},\cdots;\\ \mbox{第 4 个:}&1,1,1,4^3,\cdots;\\ \ea \eex$$ 等等, 一般的, 第 $k$ 个无穷小量为 $$\bex \underbrace{1,\cdots,1}_{k-1\mbox{ 个}},k^{k-1},\frac{1}{k+1},\frac{1}{k+2},\cdots. \eex$$ 虽然每一个都是无穷小量, 但它们的乘积却是 $1,1,\cdots,1,\cdots$, 不是无穷小量.

目录
相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
【代数学作业1完整版-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
【代数学作业1完整版-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
120 0
|
测试技术
具体数学-第6课(下降阶乘幂一)
上节课讲到下降阶乘幂和差分运算,这节课继续讲它和差分的各种性质。
241 0
具体数学-第6课(下降阶乘幂一)
具体数学-第6课(下降阶乘幂二)
上节课讲到下降阶乘幂和差分运算,这节课继续讲它和差分的各种性质。
232 0
具体数学-第6课(下降阶乘幂二)
[再寄小读者之数学篇](2014-12-24 乘积型不等式)
$$\bex \int f^2g \leq C\sen{f}_{L^2}^\frac{5q-4}{3q-2} \sen{\p_3f}_{L^q}^\frac{q}{3q-2} \sen{g}_{L^2}^\frac{q-2}{3q-2} \sen{\n_hg}_{L^2}^\frac{2q}{3q-...
836 0
[再寄小读者之数学篇](2014-11-24 积分中值定理)
积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理.
677 0
[再寄小读者之数学篇](2014-11-19 关于平方数的交叉和的两个代数等式)
For $n\geq 1$ to be an integer, $$\bex (2n)^2-(2n+1)^2+\cdots+(4n)^2 =-(4n+1)^2+\cdots+(6n)^2, \eex$$ $$\bex (2n+1)^2-(2n+2)^2+\cdots+(4n-1)^2 =-(4n)^2+(4n+1)^2-\cdots+(6n-1)^2.
764 0
[再寄小读者之数学篇](2014-07-16 任意阶导数在零处为零的一个充分条件)
设 $f(x)$ 在 $\bbR$ 上任意阶可导, 且 $$\bex \forall\ n\in\bbZ^+,\ f\sex{\frac{1}{n}}=0. \eex$$ 试证: $f^{(n)}(0)=0$.
864 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
591 0
[再寄小读者之数学篇](2014-07-09 不可约多项式与重根)
设 $\mathbb{P}$ 为数域, 如果 $p_1(x),\cdots,p_r(x)$ 是数域 $\mathbb{P}$ 上的 $r$ 个两两不同的首相系数为 $1$ 的不可约多项式, 证明: $f(x)=p_1(x)\cdots p_r(x)$ 在数域 $\mathbb{P}$ 上无重根.
761 0