[詹兴致矩阵论习题参考解答]习题2.6

简介: 6. (Embry) 我们说两个矩阵 $X$, $Y$ 可交换是指乘法可交换, 即 $XY=YX$. 设 $A,B\in M_n$ 满足 $\sigma(A)\cap \sigma(B)=\vno$. 如果 $C\in M_n$, $C$ 与 $A+B$ 可交换并且 $C$ 与 $AB$ 可交换, 则 $C$ 与 $A$ 和 $B$ 都可交换.

6. (Embry) 我们说两个矩阵 $X$, $Y$ 可交换是指乘法可交换, 即 $XY=YX$. 设 $A,B\in M_n$ 满足 $\sigma(A)\cap \sigma(B)=\vno$. 如果 $C\in M_n$, $C$ 与 $A+B$ 可交换并且 $C$ 与 $AB$ 可交换, 则 $C$ 与 $A$ 和 $B$ 都可交换.

 

 

证明: 由 $\sigma(A)\cap \sigma(B)=\vno$ 知 $AX-XB=0$ 有且仅有零解. 但 $$\beex \bea A(AC-CA)-(AC-CA)B &=A^2C-AC(A+B)+CAB\\ &=A^2C-A(A+B)C+ABC\\ &=0 \eea \eeex$$ 说明 $AC-CA$ 也是 $AX-XB=0$ 的解. 故 $AC=CA$. 同理, $BC=CB$.

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.2
2. 证明引理 7.13.       证明: 用反证法. 若对任一置换阵 $P$, $PA$ 的对角元都至少有一个为零, 则 $A$ 的每条对角线至少含有一个零元素. 由 Frobenius-K\"onig 定理, $A$ 有一个 $r\times s$ 阶的零子矩阵, $r+s=n+1$.
643 0
[詹兴致矩阵论习题参考解答]习题7.3
3. 一个 $n$ 阶符号模式方阵 $A$ 称为谱任意模式, 如果每个首一的 $n$ 次实多项式都是 $Q(A)$ 中某个矩阵的特征多项式. 研究谱任意模式.       证明: Open problems.
540 0
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
479 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
534 0
|
vr&ar
[詹兴致矩阵论习题参考解答]习题6.6
6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.
549 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
777 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
742 0
[詹兴致矩阵论习题参考解答]习题4.7
7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j
711 0
[詹兴致矩阵论习题参考解答]习题4.12
12. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 则对 $A,B\in M_n$ 和酉不变范数有 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}.
612 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
520 0