[再寄小读者之数学篇](2014-11-26 幂等矩阵的一个充分条件)

简介: 若 $A\in \bbR^{m\times n}$ 列满秩, 则 $A(A^TA)^{-1}A^T$ 是幂等矩阵, 其特征值为 $1$ 或 $0$, 且存在正交阵 $Q$, 使得 $$\bex Q^T[A(A^TA)^{-1}A^T]Q=\sex{E_n\atop 0}. \eex$$

若 $A\in \bbR^{m\times n}$ 列满秩, 则 $A(A^TA)^{-1}A^T$ 是幂等矩阵, 其特征值为 $1$ 或 $0$, 且存在正交阵 $Q$, 使得 $$\bex Q^T[A(A^TA)^{-1}A^T]Q=\sex{E_n\atop 0}. \eex$$

目录
相关文章
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-24 积分不等式)
(AMM. Problems and Solutions. 2015. 01) Let $f$ be a twice continuously differentiable function from $[0,1]$ into $\bbR$.
592 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2015-06-08 一个有意思的定积分计算)
$$\beex \bea \int_0^\frac{\pi}{4}\ln (1+\tan x)\rd x &=\int_0^\frac{\pi}{4} \ln \frac{\cos x+\sin x}{\cos x}\rd x\\ &=\int_0^\frac{\pi}{4} \ln \sez{\s...
713 0
[再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
700 0
[再寄小读者之数学篇](2014-11-24 积分中值定理)
积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理.
677 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 友谊定理)
友谊定理: 如果在一群人中任何两个人都恰好有一个共同的朋友, 那么有一个人是每个人的朋友.
812 0
[再寄小读者之数学篇](2014-10-08 矩阵对称或反对称的一个充分条件)
设$A\in M_{n}(\mathbb F)$,且对任意的$\alpha,\beta\in\mathbb F^n$ 有$$ \alpha^TA\beta=0\Leftrightarrow\beta^TA\alpha=0 $$ 且$A$不是对称矩阵,证明$A^T=-A$.
869 0
[再寄小读者之数学篇](2014-07-16 两个条件给出二阶导中值)
设 $f(x)$ 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 则对 $\forall\ x\in [a,b]$, 存在 $\xi\in (a,b)$, 使得 $$\bex f(x)=\frac{f''(\xi)}{2}(x-a)(x-b).
531 0
[再寄小读者之数学篇](2014-07-16 任意阶导数在零处为零的一个充分条件)
设 $f(x)$ 在 $\bbR$ 上任意阶可导, 且 $$\bex \forall\ n\in\bbZ^+,\ f\sex{\frac{1}{n}}=0. \eex$$ 试证: $f^{(n)}(0)=0$.
864 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
591 0
[再寄小读者之数学篇](2014-07-16 凹函数与次线性性)
设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)
566 0