设 $f$ 在 $\bbR$ 上连续可导, 且 $\dps{f'\sex{\frac{1}{2}}=0}$. 试证: $$\bex \exists\ \xi\in \sex{0,\frac{1}{2}},\st f'(\xi)=2\xi [f(\xi)-f(0)]. \eex$$
设 $f$ 在 $\bbR$ 上连续可导, 且 $\dps{f'\sex{\frac{1}{2}}=0}$. 试证: $$\bex \exists\ \xi\in \sex{0,\frac{1}{2}},\st f'(\xi)=2\xi [f(\xi)-f(0)]. \eex$$