[Everyday Mathematics]20150203

简介: 设 $f$ 在 $\bbR$ 上连续可导, 且 $\dps{f'\sex{\frac{1}{2}}=0}$. 试证: $$\bex \exists\ \xi\in \sex{0,\frac{1}{2}},\st f'(\xi)=2\xi [f(\xi)-f(0)]. \eex$$

设 $f$ 在 $\bbR$ 上连续可导, 且 $\dps{f'\sex{\frac{1}{2}}=0}$. 试证: $$\bex \exists\ \xi\in \sex{0,\frac{1}{2}},\st f'(\xi)=2\xi [f(\xi)-f(0)]. \eex$$

目录
相关文章
[Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
473 0
[Everyday Mathematics]20150222
设 $$\bex a_0=1,\quad a_1=\frac{1}{2},\quad a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}\ (n\geq 1). \eex$$ 试证: $\dps{\sum_{k=0}^\infty\frac{a_{k+1}}{a_k}}$ 收敛, 并求其值.
704 0
[Everyday Mathematics]20150215
设 $n,k$ 是正整数, 使得 $x^{2k}-x^k+1$ 整除 $x^{2n}+x^n+1$. 试证: $x^{2k}+x^k+1$ 整除 $x^{2n}+x^n+1$.
523 0
[Everyday Mathematics]20150218
设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.
492 0
[Everyday Mathematics]20150210
设正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 $1$, $E$ 为 $AB$ 的中点, $P$ 为体对角线 $BD_1$ 上一点, 当 $\angle CPE$ 最大时, 求三菱锥 $P-BCE$ 的体积.
681 0
[Everyday Mathematics]20150205
设 $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \sex{\frac{A}{h-k}}^\al\phi(h)^\beta,\quad k>h\geq k_0, \eex$$ 其中 $A,\al>0$, $\beta>1$.
653 0
|
Perl
[Everyday Mathematics]20150201
设数列 $\sed{a_n}$ 单调递减趋于零, 证明 $\dps{\vsm{n}a_n}$ 收敛当且仅当 $\dps{\vsm{n}3^k a_{3^k}}$ 收敛.
593 0
[Everyday Mathematics]20150127
设 $f,g:[a,b]\to [0,\infty)$ 连续, 单调递增, 并且 $$\bex \int_a^x \sqrt{f(t)}\rd t\leq \int_a^x \sqrt{g(t)}\rd t,\quad \forall\ x\in [a,b];\quad\quad\int_a^b \sqrt{f(t)}\rd t= \int_a^b \sqrt{g(t)}\rd t.
818 0