[Papers]NSE, $u_3$, Lebesgue space [Jia-Zhou, NARWA, 2014]

简介: $$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$

$$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$

目录
相关文章
|
机器学习/深度学习 算法框架/工具 TensorFlow
(转) AdversarialNetsPapers
  本文转自:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers about adversarial nets The First pap...
[Papers]NSE, $\p_3u$, Lebesgue space [Cao, DCDSA, 2010]
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{27}{16}\leq q\leq \frac{5}{2}. \eex$$
776 0
[Papers]NSE, $u_3$, Lebesgue space [Cao-Titi, IUMJ, 2008]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{2}{3}+\frac{2}{3q},\quad \frac{7}{2}
894 0
[Papers]NSE, $u_3$, Lebesgue space [Kukavica-Ziane, Nonlinearity, 2006]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{5}{8},\quad \frac{24}{5}
738 0
[Papers]NSE, $u_3$, Lebesgue space [Zhou-Pokorny, Nonlinearity, 2009]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{4}+\frac{1}{2q},\quad \frac{10}{3}
594 0
[Papers]NSE, $\n u_3$, Lebesgue space, [Pokorny, EJDE, 2003; Zhou, MAA, 2002]
$$\bex \n u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \infty. \eex$$
711 0
[Papers]NSE, $\p_3u$, Lebesgue space [Penel-Pokorny, AM, 2004]
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \infty. \eex$$
678 0
[Papers]NSE, $u$, Lorentz space [Bjorland-Vasseur, JMFM, 2011]
$$\bex \int_0^T\frac{\sen{\bbu}_{L^{q,\infty}}^p}{\ve+\ln \sex{e+\sen{\bbu}_{L^\infty}}}\rd s
648 0
[Papers]NSE, $u$, Lorentz space [Bosia-Pata-Robinson, JMFM, 2014]
$$\bex \bbu\in L^p(0,T;L^{q,\infty}),\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3
792 0