开发者社区> 张祖锦> 正文

[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.14

简介: 若函数 $p(t)$ 在 $[0,\infty)$ 连续, 且当 $t\to+\infty$ 时, $p(t)=o(t^N)$ ($N$ 为正整数). 又 $\lm0,\ \exists\ T> 1,\st$ $$\beex \bea {\color{red} t>T}&\ra \sev{\frac...
+关注继续查看

若函数 $p(t)$ 在 $[0,\infty)$ 连续, 且当 $t\to+\infty$ 时, $p(t)=o(t^N)$ ($N$ 为正整数). 又 $\lm<0$, 证明: 当 $t\to\infty$ 时, $$\bex \int_t^\infty p(\tau)e^{\lm \tau}\rd \tau=o(t^{N+1})e^{\lm t}. \eex$$ (北京师范大学)

 

证明: 由题意, $\color{red}\forall\ \ve>0,\ \exists\ T> 1,\st$ $$\beex \bea {\color{red} t>T}&\ra \sev{\frac{p(t)}{t^N}}\leq \ve\\ &{\color{red}\ra \sev{\frac{e^{-\lm t}\int_t^\infty p(\tau)e^{\lm \tau}\rd \tau}{t^{N+1}}}} \leq \frac{e^{-\lm t}\int_t^\infty |p(\tau)|e^{\lm \tau}\rd\tau}{t^{N+1}} \leq \frac{e^{-\lm t}\int_t^\infty \ve \tau^N e^{\lm \tau}\rd \tau}{t^{N+1}}\\ &\leq \ve N! \sum_{i=1}^{N+1} \sex{\frac{1}{-\lm t}}^i <\ve N!e^{\frac{1}{-\lm t}} {\color{red}<\ve N! e^\frac{1}{-\lm}} \eea \eeex$$ 其中最后一步是因为 $$\beex \bea I_n&\equiv \int_t^\infty \tau^N e^{\lm \tau}\rd \tau\\ &=\frac{1}{\lm}\int_t^\infty \tau^N\rd e^{\lm \tau}\\ &=\frac{1}{\lm}\sez{-t^Ne^{\lm t} -\int_t^\infty N\tau^{N-1} e^{\lm \tau}\rd \tau}\\ &=-\frac{t^N}{\lm}e^{\lm t} -\frac{N}{\lm}I_{N-1}\\ &=\cdots\\ &=\sez{\sum_{i=1}^{N+1} (-1)^i \frac{N(N-1)\cdots (N-i+1)}{\lm^i} t^{N+1-i}}e^{\lm t}. \eea \eeex$$

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
阿里云服务器怎么设置密码?怎么停机?怎么重启服务器?
如果在创建实例时没有设置密码,或者密码丢失,您可以在控制台上重新设置实例的登录密码。本文仅描述如何在 ECS 管理控制台上修改实例登录密码。
23524 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.3
证明级数 $$\bex 1 +\frac{1}{\sqrt{3}} -\frac{1}{\sqrt{2}} +\frac{1}{\sqrt{5}} +\frac{1}{\sqrt{7}} -\frac{1}{\sqrt{4}} +\frac{1}{\sqrt{9}} +\frac{1}{\sqrt{...
581 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.4
证明: 当 $p\geq1$ 时, $$\bex \vsm{n}\frac{1}{(n+1)\sqrt[p]{n}}
511 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.9
设 $f(x)$ 为连续实值函数, 对所有 $x$, 有 $f(x)\geq 0$, 且 $\dps{\int_0^\infty f(x)\rd x0,}\ \exists\ N_1,\st n\geq N_1\ra \int_{N_1}^n f(x)\rd xN_1,\st n\geq N\ra ...
653 0
JSP页面中文参数传递get和post方法分析
原文 http://developer.51cto.com/art/200907/133499.htm 在项目中,我们经常遇到需要在JSP页面切换中传递中文字符。这主要有两种方式。 ◆URL方式 例如: http://website/test1.
729 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.2
设 $\sed{a_n}$ 为等差数列, $a_{n+1}-a_n=d>0\ (n=1,2,\cdots)$, $m$ 为一正整数. 计算 $$\bex S=\vsm{n}\frac{1}{a_n\cdot a_{n+1}\cdots a_{n+m}}.
747 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,阿里云优惠总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系.
27727 0
+关注
张祖锦
数学
1414
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
JS零基础入门教程(上册)
立即下载
性能优化方法论
立即下载
手把手学习日志服务SLS,云启实验室实战指南
立即下载