谢惠民,恽自求,易法槐,钱定边编数学分析习题课讲义16.2.3练习题参考解答[来自陶哲轩小弟]

简介: 1.设已知 $ \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^{n - 1}}{a_n}} = A,\sum\limits_{n = 1}^\infty {{a_{2n - 1}}} = B $ ,证明: $ \sum\limits_{n = 1}^\infty {{a_n}} $ 收敛并求其和.

1.设已知 $ \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^{n - 1}}{a_n}} = A,\sum\limits_{n = 1}^\infty {{a_{2n - 1}}} = B $ ,证明: $ \sum\limits_{n = 1}^\infty {{a_n}} $ 收敛并求其和.
解:显然有
\[\sum\limits_{n = 1}^\infty {{a_n}} = 2\sum\limits_{n = 1}^\infty {{a_{2n - 1}}} - \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^{n - 1}}{a_n}} = 2B - A.\]

2.设 $ P(x)=a_0+a_1x+\cdots+a_mx^m $ 为 $ m $ 次多项式,求级数 $ \sum\limits_{n = 0}^\infty {\frac{{P\left( n \right)}}{{n!}}} $ 的和.
解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {\frac{{{n^k}}}{{n!}}} = \sum\limits_{n = 1}^\infty {\frac{{{n^{k - 1}}}}{{\left( {n - 1} \right)!}}} = \sum\limits_{n = 0}^\infty {\frac{{{{\left( {n + 1} \right)}^{k - 1}}}}{{n!}}} \\&= {b_{k - 1}} + C_{k - 1}^1{b_{k - 2}} + \cdots + C_{k - 1}^{k - 2}{b_1} + {b_0},\end{align*}$$
其中 $ b_0=e $ .
由此得到的数叫Bell数,记为 $ B_n $ ,并且
\[B\left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{B\left( n \right)}}{{n!}}{x^n}} = {e^{{e^x} - 1}}.\]

回到原题,我们有\[\sum\limits_{n = 0}^\infty {\frac{{P\left( n \right)}}{{n!}}} = e\sum\limits_{k = 0}^m {{a_k}{B_k}} .\]

3.求 $ 1 - \frac{{{2^3}}}{{1!}} + \frac{{{3^3}}}{{2!}} - \frac{{{4^3}}}{{3!}} + \cdots $ 的和.
解:事实上,
$$\begin{align*}{b_k} &= \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}\frac{{{n^k}}}{{n!}}} = \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^n}\frac{{{n^{k - 1}}}}{{\left( {n - 1} \right)!}}} = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^{n+1}}\frac{{{{\left( {n + 1} \right)}^{k - 1}}}}{{n!}}} \\& =- {b_{k - 1}} - C_{k - 1}^1{b_{k - 2}} - \cdots - C_{k - 1}^{k - 2}{b_1} - {b_0},\end{align*}$$
其中 $ b_0=1/e $ .因此 $ b_1=-1/e,b_2=0,b_3=1/e $ .

因此
$$\begin{align*}& 1 - \frac{{{2^3}}}{{1!}} + \frac{{{3^3}}}{{2!}} - \frac{{{4^3}}}{{3!}} + \cdots = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}\frac{{{{\left( {n + 1} \right)}^3}}}{{n!}}} \\=& {b_3} + 3{b_2} + 3{b_1} + {b_0} = - \frac{1}{e}.\end{align*}$$

4.求下列级数的和:(1) $ \sum\limits_{n = 1}^\infty {\arctan \frac{1}{{2{n^2}}}} $ ; (2) $ \sum\limits_{n = 1}^\infty {\arctan \frac{2}{{{n^2}}}} $ .
解:事实上
\[\sum\limits_{n = 1}^\infty {\arctan \frac{1}{{2{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{{2n - 1}} - \arctan \frac{1}{{2n + 1}}} \right)} = \frac{\pi }{4}.\]

\[\sum\limits_{n = 1}^\infty {\arctan \frac{2}{{{n^2}}}} = \sum\limits_{n = 1}^\infty {\left( {\arctan \frac{1}{{n - 1}} - \arctan \frac{1}{{n + 1}}} \right)} = \frac{\pi }{2} + \frac{\pi }{4} = \frac{{3\pi }}{4}.\]
5.设 $ a>1 $ ,求 $ \sum\limits_{n = 0}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} $ 的和.
解:事实上
$$\begin{align*}\sum\limits_{n = 0}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} &= \frac{1}{{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} = \frac{1}{{a + 1}} - \frac{1}{{a - 1}} + \frac{1}{{a + 1}} + \sum\limits_{n = 1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} \\&= \frac{1}{{a + 1}} - \frac{2}{{{a^2} - 1}} + \sum\limits_{n = 1}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} = \frac{1}{{a + 1}} - \frac{{{2^2}}}{{{a^{{2^2}}} - 1}} + \sum\limits_{n = 2}^\infty {\frac{{{2^n}}}{{{a^{{2^n}}} + 1}}} \\&= \frac{1}{{a + 1}} - \mathop {\lim }\limits_{n \to \infty } \frac{{{2^{n + 1}}}}{{{a^{{2^{n + 1}}}} - 1}} = \frac{1}{{a + 1}}.\end{align*}$$

6.求 $ 1 + \frac{1}{3} - \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{{11}} - \cdots $ 的和.
解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{8n - 7}} + \frac{1}{{8n - 5}} - \frac{1}{{8n - 3}} - \frac{1}{{8n - 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{8n - 8}} + {x^{8n - 6}} - {x^{8n - 4}} - {x^{8n - 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{8n - 8}} + {x^{8n - 6}} - {x^{8n - 4}} - {x^{8n - 2}}} \right)} dx} = \int_0^1 {\frac{{1 + {x^2} - {x^4} - {x^6}}}{{1 - {x^8}}}dx} \\= &\left. {\frac{{\arctan \left( {1 + \sqrt 2 x} \right) - \arctan \left( {1 - \sqrt 2 x} \right)}}{{\sqrt 2 }}} \right|_0^1 = \frac{\pi }{{2\sqrt 2 }}.\end{align*}$$

7.求 $ 1 - \frac{1}{7} + \frac{1}{9} - \frac{1}{{15}} + \cdots $ 的和.
解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{8n - 7}} - \frac{1}{{8n - 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{8n - 8}} - {x^{8n - 2}}} \right)} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{8n - 8}} - {x^{8n - 2}}} \right)} dx} = \int_0^1 {\frac{{1 - {x^6}}}{{1 - {x^8}}}dx} \\= &\left. {\frac{{2\arctan x + \sqrt 2 \arctan \left( {1 + \sqrt 2 x} \right) - \arctan \left( {1 - \sqrt 2 x} \right)}}{4}} \right|_0^1 = \frac{{\sqrt 2 + 1}}{8}\pi .\end{align*}$$

8.求 $ 1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{{10}} + \cdots $ 的和.
解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{6n - 5}} - \frac{1}{{6n - 2}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{6n - 6}} - {x^{6n - 3}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{6n - 6}} - {x^{6n - 3}}} \right)} dx} = \int_0^1 {\frac{{1 - {x^3}}}{{1 - {x^6}}}dx} = \int_0^1 {\frac{1}{{1 + {x^3}}}dx} \\=& \left. {\left( { - \frac{1}{6}\ln \left( {{x^2} - x + 1} \right) + \frac{1}{3}\ln \left( {x + 1} \right) + \frac{{\arctan \frac{{2x - 1}}{{\sqrt 3 }}}}{{\sqrt 3 }}} \right)} \right|_0^1 = \frac{{\sqrt 3 \pi + 3\ln 2}}{9}.\end{align*}$$

9.设 $ {a_n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n},n = 1,2, \cdots $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{n\left( {n + 1} \right)}}} $ 的和.
解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{{{a_n}}}{{n\left( {n + 1} \right)}}} = \sum\limits_{n = 1}^\infty {\frac{{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{{n\left( {n + 1} \right)}}} \\=&\sum\limits_{n = 1}^\infty {\left( {\frac{{1 + \frac{1}{2} + \cdots + \frac{1}{n}}}{n} - \frac{{1 + \frac{1}{2} + \cdots + \frac{1}{{n + 1}}}}{{n + 1}}} \right)} + \sum\limits_{n = 1}^\infty {\frac{1}{{{{\left( {n + 1} \right)}^2}}}} \\= & 1 - \mathop {\lim }\limits_{n \to \infty } \frac{{1 + \frac{1}{2} + \cdots + \frac{1}{{n + 1}}}}{{n + 1}} + \left( {\frac{{{\pi ^2}}}{6} - 1} \right) = \frac{{{\pi ^2}}}{6} - \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{{n + 2}}}}{1} = \frac{{{\pi ^2}}}{6}.\end{align*}$$

10.求 $ \sum\limits_{n = 0}^\infty {\left( {\frac{1}{{4n + 1}} + \frac{1}{{4n + 3}} - \frac{1}{{2n + 2}}} \right)} $ 的和.
解:
$$\begin{align*}&\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{4n + 1}} + \frac{1}{{4n + 3}} - \frac{1}{{2n + 2}}} \right)} = \sum\limits_{n = 0}^\infty {\int_0^1 {\left( {{x^{4n}} + {x^{4n + 2}} - {x^{2n + 1}}} \right)} } \\= &\int_0^1 {\sum\limits_{n = 0}^\infty {\left( {{x^{4n}} + {x^{4n + 2}} - {x^{2n + 1}}} \right)} dx} = \int_0^1 {\left( {\frac{{1 + {x^2}}}{{1 - {x^4}}} - \frac{x}{{1 - {x^2}}}} \right)dx} \\=& \int_0^1 {\frac{1}{{1 + x}}dx} = \ln 2.\end{align*}$$

11.求 $ 1 - \frac{1}{4} + \frac{1}{6} - \frac{1}{9} + \frac{1}{{11}} - \frac{1}{{14}} + \cdots $ 的和.
解:
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\left( {\frac{1}{{5n - 4}} - \frac{1}{{5n - 1}}} \right)} = \sum\limits_{n = 1}^\infty {\int_0^1 {\left( {{x^{5n - 5}} - {x^{5n - 2}}} \right)dx} } \\=& \int_0^1 {\sum\limits_{n = 1}^\infty {\left( {{x^{5n - 5}} - {x^{5n - 2}}} \right)} dx} = \int_0^1 {\frac{{1 - {x^3}}}{{1 - {x^5}}}dx} \\= &\left. {\left( {\frac{{\left( {5 - \sqrt 5 } \right)/10}}{{{x^2} + \frac{{\sqrt 5 + 1}}{2}x + 1}} + \frac{{\left( {5 + \sqrt 5 } \right)/10}}{{{x^2} + \frac{{ - \sqrt 5 + 1}}{2}x + 1}}} \right)} \right|_0^1 = \frac{{\sqrt {25 + 10\sqrt 5 }}}{{25}}\pi .\end{align*}$$

12.求 $ \frac{{{x^3}}}{{3!}} + \frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}} + \cdots $ 的和函数.
解:事实上,方程 $ \omega^3=1 $ 有三个根 $ 1,{ - \frac{1}{2} + \frac{{\sqrt 3 i}}{2}},{ - \frac{1}{2} - \frac{{\sqrt 3 i}}{2}} $ .利用 $ \sinh $ 便可得到所需函数
$$\begin{align*}&\frac{{\sinh x + \sinh \left( { - \frac{1}{2} + \frac{{\sqrt 3 i}}{2}} \right)x + \sinh \left( { - \frac{1}{2} - \frac{{\sqrt 3 i}}{2}} \right)x}}{3}\\= & - \frac{2}{3}\sinh \frac{x}{2}\cos \frac{{\sqrt 3 x}}{2} + \frac{{\sinh x}}{3} = \frac{{{x^3}}}{{3!}} + \frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}} + \cdots .\end{align*}$$

我们还有

$$\begin{align*}&{\frac{{\sin x +\sin \left( { - \frac{1}{2} + \frac{{\sqrt 3 i}}{2}} \right)x + \sin \left( { - \frac{1}{2} - \frac{{\sqrt 3 i}}{2}} \right)x}}{{ - 3}}}\\= &\frac{2}{3}\sin \frac{x}{2}\cosh \frac{{\sqrt 3 x}}{2} - \frac{{\sin x}}{3} = \frac{{{x^3}}}{{3!}} - \frac{{{x^9}}}{{9!}} + \frac{{{x^{15}}}}{{15!}} - \frac{{{x^{21}}}}{{21!}} + \cdots .\end{align*}$$

13.求 $ \sum\limits_{n = 1}^\infty {\frac{{{{\left[ {\left( {n - 1} \right)!} \right]}^2}}}{{\left( {2n} \right)!}}{{\left( {2x} \right)}^{2n}}} $ 的和函数.
解:在 $ |x|<1 $ 上对 $ S(x) $ 逐项求导,知 $ S'\left( x \right) = 2\sum\limits_{n = 1}^\infty {\frac{{{{\left[ {\left( {n - 1} \right)!} \right]}^2}}}{{\left( {2n - 1} \right)!}}{{\left( {2x} \right)}^{2n - 1}}} $ ,且 $ S''\left( x \right) = 4\sum\limits_{n = 1}^\infty {\frac{{{{\left[ {\left( {n - 1} \right)!} \right]}^2}}}{{\left( {2n - 2} \right)!}}{{\left( {2x} \right)}^{2n - 2}}} $ .由此可得 $ (1-x^2)S''(x)-xS'(x)=4 $ .在两端乘以 $ {(1-x^2)}^{-1/2} $ ,我们有
\[{\left( {\sqrt {1 - {x^2}} S'\left( x \right)} \right)^\prime } = \frac{4}{{\sqrt {1 - {x^2}} }},\]故
\[S\left( x \right) = \frac{{4\arcsin x}}{{\sqrt {1 - {x^2}} }} + \frac{1}{{\sqrt {1 - {x^2}} }},\quad \left| x \right| < 1.\]

14.求 $ \sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} $ 的和函数.
解:注意到
$$\begin{align*}&\left( {1 - \frac{1}{x}} \right)\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} \\=& \sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} - \sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} \\= &\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}} - {x^n}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} = \sum\limits_{n = 1}^\infty {\left( {\frac{1}{{1 - {x^{n + 1}}}} - \frac{1}{{1 - {x^n}}}} \right)} \\=& \mathop {\lim }\limits_{n \to \infty } \frac{1}{{1 - {x^{n + 1}}}} - \frac{1}{{1 - x}} = \begin{cases}\frac{1}{{x - 1}},&\left| x \right| > 1\\\frac{x}{{x - 1}},&\left| x \right| < 1\end{cases} .\end{align*}$$
因此
\[\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {1 - {x^n}} \right)\left( {1 - {x^{n + 1}}} \right)}}} = \begin{cases}\frac{x}{{{{\left( {x - 1} \right)}^2}}}, &\left| x \right| > 1\\\frac{{{x^2}}}{{{{\left( {x - 1} \right)}^2}}}, &\left| x \right| < 1\end{cases} .\]

15.设 $ \sum\limits_{n = 1}^\infty {\frac{1}{{{a_n}}}} $ 为发散的正项级数, $ x>0 $ ,求 $ \sum\limits_{n = 1}^\infty {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} $ 的和函数.
解:首先,
$$\begin{align*}&\sum\limits_{n = 1}^\infty {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} \\=& \frac{{{a_1}}}{{{a_2} + x}} + \frac{1}{x}\sum\limits_{n = 2}^\infty {\left[ {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_n} + x} \right)}} - \frac{{{a_1}{a_2} \cdots {a_{n + 1}}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} \right]} \\=& \frac{{{a_1}}}{{{a_2} + x}} + \frac{1}{x}\left[ {\frac{{{a_1}{a_2}}}{{{a_2} + x}} - \mathop {\lim }\limits_{n \to \infty } \frac{{{a_1}{a_2} \cdots {a_{n + 1}}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} \right].\end{align*}$$
当 $ n $ 足够大时,\[1 + \frac{x}{{{a_{n + 1}}}} \sim {e^{x/{a_{n + 1}}}}.\]
因此 $ {\left( {1 + \frac{x}{{{a_2}}}} \right) \cdots \left( {1 + \frac{x}{{{a_{n + 1}}}}} \right)} $ 与 $ \exp \left\{ {x\sum\limits_{n = 1}^\infty {\frac{1}{{{a_n}}}} } \right\} $ 具有相同的收敛性,均发散,故
\[\mathop {\lim }\limits_{n \to \infty } \frac{{{a_1}{a_2} \cdots {a_{n + 1}}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{a_1}}}{{\left( {1 + \frac{x}{{{a_2}}}} \right) \cdots \left( {1 + \frac{x}{{{a_{n + 1}}}}} \right)}} = 0.\]
从而
\[\sum\limits_{n = 1}^\infty {\frac{{{a_1}{a_2} \cdots {a_n}}}{{\left( {{a_2} + x} \right) \cdots \left( {{a_{n + 1}} + x} \right)}}} = \frac{{{a_1}}}{{{a_2} + x}} + \frac{{{a_1}{a_2}}}{{x\left( {{a_2} + x} \right)}} = \frac{{{a_1}}}{x}.\]

16.设 $ x>1 $ ,求 $ \frac{x}{{x + 1}} + \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots $ 的和函数.
解:$$\begin{align*}I &= \left( {1 - \frac{1}{{x + 1}}} \right) + \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= 1 + \left( { - \frac{1}{{x + 1}} + \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}} \right) + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= 1 - \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} + \frac{{{x^4}}}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= 1 - \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} + \cdots \\&= \cdots = 1 - \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\left( {x + 1} \right)\left( {{x^2} + 1} \right) \cdots \left( {{x^{{2^{n - 1}}}} + 1} \right)}} = 1.\end{align*}$$ 

 

源自: http://www.math.org.cn/forum.php?mod=viewthread&tid=35174 [未验证其正确性, 仅供参考]

目录
相关文章
|
Java
SpringBoot实现文件上传接口
文件上传是很多业务场景需要实现的功能,今天就简单以Springboot框架为基础实现文件上传的接口。
2510 0
SpringBoot实现文件上传接口
|
算法 语音技术
基于MFCC特征提取和HMM模型的语音合成算法matlab仿真
基于MFCC特征提取和HMM模型的语音合成算法matlab仿真
|
Linux 网络安全 数据库
CentOS7开启Firewalld防火墙日志记录获取被拦截的IP
CentOS7开启Firewalld防火墙日志记录获取被拦截的IP
2157 0
CentOS7开启Firewalld防火墙日志记录获取被拦截的IP
|
1月前
|
JSON 前端开发 JavaScript
如何开发一套EHS健康安全环境管理系统中的健康管理板块?(附架构图+流程图+代码参考)
本文深入探讨了企业EHS(环境、健康与安全)系统中的核心模块——健康管理。文章指出,企业健康管理不仅是合规要求,更是提升生产效率、降低事故率和用工成本的关键。通过构建系统化、数据化的健康管理模块,企业可以实现体检、档案、劳保用品管理、异常预警和统计看板的闭环管理。特别适用于中大型企业,文章提供了从系统架构设计、数据库建模、后端与前端实现到部署运维的完整解决方案,并附有可落地的代码示例和技术选型建议。此外,还涵盖了开发技巧、权限控制、数据隐私、接口设计等工程化实践,以及系统扩展和第三方集成的思路,为企业打造高效、合规、可持续优化的EHS健康管理体系提供了全面指导。
|
1月前
|
人工智能 监控 数据可视化
基于YOLOv8的无人机位置捕捉识别项目|完整源码数据集
本项目基于YOLOv8构建无人机目标检测系统,集成PyQt5图形界面,支持图像、视频、摄像头等多种输入方式,具备高精度识别与实时检测能力,适用于安防监控、目标跟踪等场景。含完整训练代码、数据集及部署教程,开箱即用,适合AI学习与工程实践。
基于YOLOv8的无人机位置捕捉识别项目|完整源码数据集
|
数据可视化 数据挖掘 定位技术
Seaborn统计图表指南
【7月更文挑战第12天】Seaborn是Python的数据可视化库,基于Matplotlib,提供美观的统计图形。要开始使用,需通过`pip install seaborn`安装。它支持多种图表,如分布图、热图、聚类图、箱线图、小提琴图、联合分布图、点图、多变量分布图、线性关系图、树地图、时间序列图、分面绘图、分类数据图、分布对比图、多变量图和气泡图等,适用于复杂数据分析和展示。Seaborn简化了创建这些高级图表的过程,使数据可视化更直观和高效。
|
JSON 测试技术 Apache
解决 JMeter 返回内容中文乱码问题的详细指南
在Apache JMeter性能测试中,遇到中文乱码问题会影响测试效果和报告理解。解决方法包括:1) 修改`jmeter.properties`配置文件,将`sampleresult.default.encoding`设为UTF-8;2) 在HTTP请求中指定`Content-Encoding`为UTF-8,确保请求和响应编码一致;3) 使用后置处理器如JSR223处理响应数据编码;4) CSV数据文件保存为UTF-8并在JMeter中配置相应编码;5) 添加HTTP Header Manager设置`Content-Type`。
|
存储 Oracle 关系型数据库
达梦数据库入门语法:从基础到进阶的指南
达梦数据库入门语法:从基础到进阶的指南
2665 2
|
数据采集 存储 数据挖掘
Python爬虫实战:打造一个简单的新闻网站数据爬取工具
本文将介绍如何运用Python编写一个简单而高效的网络爬虫,帮助您在实际项目中快速获取并存储新闻网站的数据。通过学习本文,您将了解到如何利用Python中的第三方库和技术来实现数据爬取,为您的数据分析和应用提供更多可能性。
|
设计模式 移动开发 Java
浅谈交易链路中的一些设计原则&模式
作者对设计原则、模式等学习后,通过本文谈谈自己的感受。
160167 28