中国科学院大学2016年硕转博考试试题

简介: 转载自: http://www.math.org.cn/forum.php?mod=viewthread&tid=36853   2016年9月17日,国科大举行硕转博公共基础课考试,试题分三个方向,考试满90分才算合格!   数学:三选二(公共基础部分) 分析 一、 求\[I...

转载自: http://www.math.org.cn/forum.php?mod=viewthread&tid=36853


 

2016年9月17日,国科大举行硕转博公共基础课考试,试题分三个方向,考试满90分才算合格!


 

数学:三选二(公共基础部分)


分析
一、 求\[I=\int_0^{2\pi} \frac1{a+\cos\theta}d \theta,\quad a>1.\]

二、 设复变函数$f(z)$为整函数,且存在正整数$n$以及常数$R>0,M>0$,使得当$|z|>R$时,有$|f(z)|\leq M|z|^n$.试证明: $f(z)$是一个至多$n$次的多项式或一常数.

三、 陈述Lebesgue控制收敛定理并证明\[\lim_{n\to+\infty}\int_0^\infty\frac{\ln (x+n)}ne^{-x}\cos xd x=0.\]

四、 陈述开映射定理并证明:设$\|\cdot\|_1$和$\|\cdot\|_2$是线性空间$X$上的两种范数,且使得$(X,\|\cdot\|_1)$和$(X,\|\cdot\|_2)$都是完备的.若存在常数$a>0$使得对任意$x\in X$,有$\|x\|_2\leq a\|x\|_1$,则一定存在常数$b>0$,使得对任意$x\in X$,有$\|x\|_1\leq b\|x\|_2$.

代数

一、 设$a$和$b$是群$G$的元素,阶数分别为$m$和$n$, $(m,n)=1$且$ab=ba$.证明$ab$的阶为$mn$.

二、 设$S_n$是$\{1,2,\cdots,n\}$上的$n$次对称群.证明:
1) $S=\{\sigma|\sigma\in S_n,\sigma (1)=1\}$是$S_n$的子群;
2) $\{(1),(1,2),(1,3),\cdots,(1,n)\}$组成$S$在$S_n$中的一个左陪集代表元素.

三、 设群$G$作用在集合$X$上.记$n$为$X$在$G$作用下的轨道个数,对任意$a\in X$,记$\Omega_a=\{ga|g\in G\}$是$a$所在的轨道, $Ga=\{g\in G|ga=a\}$为$a$的固定子群.对任意$g\in G$,记$f(g)$为$X$在$g$作用下的不动点个数.证明:
1) $b\in\Omega_a\Leftrightarrow \Omega_a=\Omega_b$;
2) 对任意$g\in G$,有$G_{ga}=gG_ag^{-1}$;
3) $\sum_{g\in G}f(g)=n|G|$.

四、 设$R,S$是环, $f:R\to S$是环的同态.证明同态核$\ker f$是环$R$的理想,并且映射
\begin{align*}F:R/\ker f&\to S\\\overline r&\mapsto f(r)\end{align*}
是环的单同态,特别地: $F:R/\ker f\to \mathrm{Im} f$是环的同构.

五、 证明多项式$x^2+x+1$与$x^3+x+1$在$\mathbb{Z}_2$上不可约,并求出有限域$\mathbb{Z}_2$上的全部三次不可约多项式.

几何拓扑

一、 在实数集$\mathbb{R}$上定义一个拓扑,使其包含$(0,2)$与$(1,3)$,且包含尽可能少的开集.

二、 设$X$是一个拓扑空间, $A$与$B$是$X$的子集, $\overline A$与$\overline B$分别为$A$与$B$的闭包.证明若$A\subset B$,则$\overline A\subset \overline B$.

三、 设$\{X_n\}$是具有标准拓扑的实数集$\mathbb{R}$中的数列,其中$x_n=\frac{(-1)^n}n$.
1) 证明每个含$0$的邻域都包含某个开区间$(-a,a)$;
2) 对任意的$a>0$,存在$N\in \mathbb{Z}^+$,使得当$n\geq N$时,有$x_n\in (-a,a)$.

四、 求$E^3$中曲线$r(t)=(a\cos t,a\sin t,bt)$的曲率和挠率,其中$a$和$b$是不为$0$的常数.

五、求$E^3$中曲面$r(u,v)=(u\cos v,u\sin v,v)$的高斯曲率和平均曲率.

 

系统科学、控制论(公共基础部分)


一、(50分)简述以下概念和原理:
(1) 对偶原理;

(2) 分离性原理;

(3) 最小实现;

(4) 平衡点;

(5) 渐进稳定性。

二、(20分)判断下述系统是否能控:
\[\dot x = Ax + bu = \left[ {\begin{array}{*{20}{c}}{ - 1}&1&0&0\\0&{ - 1}&0&0\\0&0&1&1\\0&0&0&1\end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right]u.\]

三、(20分)判断下述系统是否能观测:
\[\left\{ \begin{array}{l}\dot x = Ax + bu = \left[ {\begin{array}{*{20}{c}}0&1&0\\0&0&1\\{ - 2}&{ - 4}&{ - 3}\end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}1\\0\\0\end{array}} \right]u,\\y = cx = \left[ {\begin{array}{*{20}{c}}1&4&2\end{array}} \right]x.\end{array} \right.\]

四、(20分)判断下述系统的稳定性:
\[\left\{ \begin{array}{l}{{\dot x}_1} = {x_2},\\{{\dot x}_2} =  - {x_1}.\end{array} \right.\]

五、(20分)证明线性系统能观测性在输出反馈下保持不变。

六、(20分)设开区域$D$满足$0\in D\subset \mathbb{R}^n$。考虑系统$$\dot x=f(x),$$其中$f:D\to \mathbb{R}^n$是局部李普希兹函数,并且$f(0)=0$。如果存在连续可微函数$V:D\to \mathbb{R}$满足
(i) 当$x\in D-\{0\}$时$V(x)>0$,且$V(0)=0$,

(ii) $\dot V(x)\leq 0,x\in D$,
证明$x=0$稳定。

 

统计学(公共基础部分)



一、(15分)数列$\{a_n\}$满足关系式$a_{n+1}=a_n+\frac{n}{a_n},a_1>0$.求证$\lim_{n\to\infty} n(a_n-n)$存在.


二、(15分)设$f(x)$在$(a,b)$内二次可导,且存在常数$\alpha,\beta$,使得对于$\forall x\in (a,b)$
$$f'(x)=\alpha f(x)+\beta f''(x),$$则$f(x)$在$(a,b)$内无穷次可导.

三、(15分)求幂级数$\sum_{n=0}^\infty \frac{n^3+2}{(n+1)!}(x-1)^n$的收敛域与和函数.

四、(15分)设$f(x)$是$\mathbb{R}$上有下界或者有上界的连续函数且存在正数$a$使得$$f(x)+a\int_{x-1}^x f(t) dt$$为常数.求证: $f(x)$必为常数.

五、(15分)设$f(x,y)$在$x^2+y^2\leq 1$上有连续的二阶偏导数, $f_{xx}^2+2f_{xy}^2+f_{yy}^2\leq M$.若$f(0,0)=0,f_x(0,0)=f_y(0,0)=0$,证明$$\left |\iint_{x^2+y^2\leq 1}f(x,y)dxdy\right |\leq \frac{\pi\sqrt{M}}4. $$

六、(15分)已知\[A=\left( {\begin{array}{*{20}{c}}{ - \frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}\\{\frac{1}{2}}&{ - \frac{{\sqrt 3 }}{2}}\end{array}} \right),\]求$A^{2016}$.

七、(15分)已知\[A = \left( {\begin{array}{*{20}{c}}1&2\\3&4\end{array}} \right),\]而$A^n=\alpha_nI+\beta_n A$.求$\alpha_n,\beta_n$.

八、 (15分)在$\mathbb{R}^4$中,$$\alpha=(1,1,-1,1),\beta=(1,-1,1,1),\gamma=(1,0,1,1),M=(\alpha,\beta,\gamma),$$求$M^\bot$的一组标准正交基.(数据忘记了)

九、(15分)已知线性空间$M=\{(x,y)|x-2y+z=0\}$,求$u=(1,2,3)'$在$M$上的正交投影.

十、 (15分)设$u,v\in \mathbb{R}^n$,若$u'u=v'v$,证明存在$n$阶正交矩阵$Q$,使得$Qu=v,Qv=u$.

目录
相关文章
|
机器学习/深度学习 缓存 算法
江苏大学 计算机网络 期末/考研复试 复习(一)
江苏大学 计算机网络 期末/考研复试 复习
257 0
江苏大学 计算机网络 期末/考研复试 复习(一)
|
机器学习/深度学习 缓存 网络协议
江苏大学 计算机网络 期末/考研复试 复习(二)
江苏大学 计算机网络 期末/考研复试 复习
173 0
江苏大学 计算机网络 期末/考研复试 复习(二)
2017年天津市大学生数学竞赛试题 (理工类)
更多试题见: http://www.cnblogs.com/zhangzujin/p/6791306.html   参考解答见: http://www.cnblogs.com/zhangzujin/p/3527416.
1048 0
欢迎报考我的研究生
以后更新在http://www.followmath.com/forum.php?mod=viewthread&tid=236     欢迎加入我的科研团队   张祖锦, 男, 中山大学理学博士, 副教授, 硕士生导师.
1874 0
中国科学院大学2017年数学分析考研试题
$ \lim \limits_{x \rightarrow \infty}x^{\frac{3}{2}}(\sqrt {2+x}-2\sqrt{1+x}+\sqrt{x}) $ 已知$ a_{n+1}(a_n+1)=1, a_0=0 $,证明数列的极限存在,并且求出极限值 f(x)三次连续可微,...
882 0
北京大学2017年数学分析考研试题
2017年北京大学硕士研究生数学分析真题 1.(10分) 证明:$$\lim_{n \to +\infty }\int_{0}^{\frac{\pi }{2}}\frac{\sin ^nx}{\sqrt{\pi -2x}}dx=0.
1355 0
欢迎报考赣南师范大学数学与计算机科学学院硕士研究生!
http://mp.weixin.qq.com/s?__biz=MzA3Mzc0OTQ4Ng==&mid=2649291255&idx=1&sn=6c5a8f95fcff3d1184458f6dbeeb7d93&scene=1&srcid=0812SpxdNRs6uv4tOgBML8fT#rd
836 0
2016年江苏省普通高等学校第十三届高等数学竞赛试题(本科一级)讲解
http://www.chuanke.com/6932084-178207.html 需要注册并点击"开始学习"才能看完视频.   pdf 下载: http://bbs.sciencenet.cn/thread-3086134-1-1.html
1083 0