linux驱动开发--字符设备:内核等待队列

简介: <p><span style="font-size:18px"><span style="white-space:pre"></span><span style="white-space:pre"></span>      在Linux驱动程序中,可以使用等待队列(wait queue)来实现阻塞进程的唤醒。等待队列可以用来同步对系统资源的访问。</span></p> <p><span

      在Linux驱动程序中,可以使用等待队列(wait queue)来实现阻塞进程的唤醒。等待队列可以用来同步对系统资源的访问。

1.定义和初始化队列头
wait_queue_head_t wqh;
init_waitqueue_head(wait_queue_head_t *wqh);

2.定义和初始化等待队列
DECLARE_WAITQUEUE(name, tsk);
3.添加、移除等待队列
add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
将等待队列wait添加到等待队列头q执行的等待队列链表中,或者从中删除。
4.等待事件
wait_event(queue, condition);当condition为真时,立即返回;否则进程进入TASK_UNINTERRUPTIBLE类型的睡眠状态,并挂在queue指定的等待队列头上。
add_wait_queue(queue, conditon);当condition为真时,立即返回;否则进程进入TASK_INTERRUPTIBLE类型的睡眠状态,并挂在queue指定的等待队列头上。
5.唤醒队列
wake_up(wait_queue_head_t *queue);
wake_up_interruptible(wait_queue_head_t *queue);
唤醒由queue指向的等待队列头链表中所有等待队列对应的进程。
6.在等待队列中睡眠
sleep_on(wait_queue_head_t *q);让进程进入不可中断的睡眠,并将它放入等待队列
interruptible_sleep_on(wait_queue_head_t *q);让进程进入不可中断的睡眠,并将它进入等待队列。


内核等待队列一般使用方法:
a.定义和初始化等待队列,将进程状态改变,并将等待队列添加到等待队列数据链中
b.改变进程状态的方法:调用set_current_state(state_value)函数、调用set_task_state(task, state_value)函数、直接采用current->state = TASK_INTERRUPTIBLE,类似于赋值语句。
c.通过schedule()调用放弃cpu,调度其他进程执行
d.进程被其它地方唤醒,将等待队列移出等待队列头指向的数据链

/**
*Copyright (c) 2013.TianYuan
*All rights reserved.
*
*文件名称: char_device_driver13.c
*文件标识: 等待队列
*
*当前版本:1.0
*作者:wuyq 
*
*取代版本:xxx
*原作者:xxx
*完成日期:2013-11-29
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <asm/uaccess.h>

#include <asm/gpio.h>
#include <plat/gpio-cfg.h>
#include <linux/spinlock_types.h>
#include <linux/sched.h>


MODULE_LICENSE("GPL");
#define CDD_MAJOR	200//cat /proc/devices找一个尚未使用的
#define CDD_MINOR	0
#define CDD_COUNT	2
dev_t dev = 0;
u32 cdd_major = 0;
u32 cdd_minor = 0;

struct class *dev_class = NULL;
#define BUF_SIZE	100
struct cdd_cdev{
	struct cdev cdev;
	struct device *dev_device;
	u8 led;
	
	char kbuf[BUF_SIZE];
	
	u32 data_len;//记录缓冲区中已经写入数据的长度
	//定义等待队列头
	wait_queue_head_t wqh;
};

struct cdd_cdev *cdd_cdevp = NULL;

unsigned long led_gpio_table[2] = {
	S5PV210_GPC1(3),//数字
	S5PV210_GPC1(4),
};

int cdd_open(struct inode* inode, struct file *filp)
{
	struct cdd_cdev *pcdevp = NULL;
	printk("enter cdd_open!\n");

	pcdevp = container_of(inode->i_cdev, struct cdd_cdev, cdev);
	printk("led = %d\n", pcdevp->led);
	
	/*获取信号量*/
	//down获取信号量不成功,会导致进程睡眠(第3个进程的时候)
	//down(&pcdevp->sem_open);
	if(down_interruptible(&pcdevp->sem_open)<0){
		return -1;
	}
	filp->private_data = pcdevp;
	//申请gpio管脚
	gpio_request(led_gpio_table[0], "GPC1_3");
	gpio_request(led_gpio_table[1], "GPC1_4");
	
	return 0;
}

int cdd_read(struct file *filp, char __user *buf, size_t count, loff_t *offset)
{
	int ret = 0;
	u32 pos = *offset;
	u32 cnt = count;
	
	struct cdd_cdev *cdevp = filp->private_data;
#if 0
	//定义并初始化一个等待队列
	DECLARE_WAITQUEUE(wq, current);
	//将等待队列添加到wqh指向的链表
	add_wait_queue(&pcdevp->wqh, &wq);
	//判断设备有没有数据供用户空间读,假设led不为0,表示有数据供用户空间读取
	if(pcdevp->led == 0){
		printk("no data for reading! sleep...\n");
		//设置当前线程为睡眠状态
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();//内核调度cpu的算法
		printk("have data for reading!\n");
	}
	//从指定的链表中删除等待队列
	remove_wait_queue(&pcdevp->wqh, &wq);
#endif
	wait_event_interruptible(&pcdevp->wqh, pcdevp->led != 0); 
	
	//printk("enter cdd_read!\n");
	if(cnt > (cdevp->data_len-pos) ){
		cnt = cdevp->data_len - pos;
	}
	
	ret = copy_to_user(buf, cdevp->kbuf+pos, cnt);
	//printk("kernel kbuf content:%s\n", cdevp->kbuf);
	*offset += cnt;
	
	pcdevp->led = 0;
	
	return ret;
}

int cdd_write(struct file *filp, const char __user *buf, size_t count, loff_t *offset)
{
	int ret = 0;
	struct cdd_cdev *cdevp = filp->private_data;
	u32 pos = *offset;
	u32 cnt = count;
	
	//printk("enter cdd_write!\n");
	if(cnt > (BUF_SIZE - pos) ){
		cnt = BUF_SIZE - pos;
	}
	ret = copy_from_user(cdevp->kbuf+pos, buf, cnt);
	*offset += cnt;
	if(*offset > cdevp->data_len){
		cdevp->data_len = *offset;
	}
	pcdevp->led = 1;
	//唤醒等待队列头中的一个等待队列
	wake_up_interruptible(&pcdevp->wqh);
	
	
	return ret;
}

int cdd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long data)
{
	//printk("enter cdd_ioctl!\n");
	switch(cmd){
		case 1://点亮灯
			//设置管脚为输出功能
			//参数:1.要设置的管脚编号2.默认的输出值 0低电平1高电平
			gpio_direction_output(led_gpio_table[data], 0);
			//禁止内部上拉
			s3c_gpio_setpull(led_gpio_table[data], SEC_GPIO_PULL_NONE);
			//设置输出值
			gpio_set_value(led_gpio_table[data], 1);
			
			break;
		case 0://熄灭灯
			
			//设置管脚为输出功能
			//参数:1.要设置的管脚编号2.默认的输出值 0低电平1高电平
			gpio_direction_output(led_gpio_table[data], 0);
			//禁止内部上拉
			s3c_gpio_setpull(led_gpio_table[data], SEC_GPIO_PULL_NONE);
			//设置输出值
			gpio_set_value(led_gpio_table[data], 0);
			
			break;
		default:
			return -EINVAL;
	}
	
	
	return 0;
}

int cdd_release(struct inode *inode, struct file *filp)
{
	struct cdd_cdev *pcdevp = filp->private_data;
	printk("enter cdd_release!\n");
	
	gpio_free(led_gpio_table[0]);
	gpio_free(led_gpio_table[1]);
	up(&pcdevp->sem_open);
	return 0;
}

loff_t cdd_llseek(struct file *filp, loff_t offset, int whence)
{
	struct cdd_cdev *pcdevp = filp->private_data;
	loff_t newpos = 0;
	switch(whence){
		case SEEK_SET:
			newpos = offset;
			break;
		case SEEK_CUR:
			newpos = filp->f_pos + offset;
			break;
		case SEEK_END:
			newpos = pcdevp->data_len + offset;
			break;
		default:
			return -EINVAL;//无效的参数
	}
	
	if( newpos<0 || newpos>= BUF_SIZE ){
		return -EINVAL;
	}
	filp->f_pos = newpos;
	return newpos;
}

struct file_operations cdd_fops = {
	.owner = THIS_MODULE,
	.open = cdd_open,
	.read = cdd_read,
	.write = cdd_write,
	.ioctl = cdd_ioctl,
	.release = cdd_release,
	.llseek = cdd_llseek,
	};

int __init cdd_init(void)
{
	int ret = 0;
	int i = 0;
	
	if(cdd_major){
		dev = MKDEV(CDD_MAJOR, CDD_MINOR);//生成设备号
		//注册设备号;1、要注册的起始设备号2、连续注册的设备号个数3、名字
		ret = register_chrdev_region(dev, CDD_COUNT, "cdd_demo");
	}else{
		// 动态分配设备号
		ret = alloc_chrdev_region(&dev, cdd_minor, CDD_COUNT, "cdd_demo02");
	}
	
	if(ret < 0){
		printk("register_chrdev_region failed!\n");
		goto failure_register_chrdev;
	}
	//获取主设备号
	cdd_major = MAJOR(dev);
	printk("cdd_major = %d\n", cdd_major);
	
	cdd_cdevp = kzalloc(sizeof(struct cdd_cdev)*CDD_COUNT, GFP_KERNEL);
	if(IS_ERR(cdd_cdevp)){
		printk("kzalloc failed!\n");
		goto failure_kzalloc;
	}
	/*创建设备类*/
	dev_class = class_create(THIS_MODULE, "cdd_class");
	if(IS_ERR(dev_class)){
		printk("class_create failed!\n");
		goto failure_dev_class;
	}
	for(i=0; i<CDD_COUNT; i++){
		/*初始化cdev*/
		cdev_init(&(cdd_cdevp[i].cdev), &cdd_fops);
		/*添加cdev到内核*/
		cdev_add(&(cdd_cdevp[i].cdev), dev+i, 1);
		
		/* “/dev/xxx” */
		device_create(dev_class, NULL, dev+i, NULL, "cdd%d", i);
		
		cdd_cdevp[i].led = i;
		//初始化等待队列头
		init_waitqueue_head(&cdd_cdevp[i].wqh);
	}
	
	return 0;
failure_dev_class:
	kfree(cdd_cdevp);
failure_kzalloc:
	unregister_chrdev_region(dev, CDD_COUNT);
failure_register_chrdev:
	return ret;
}

void __exit cdd_exit(void)
{
/*逆序消除*/
	int i = 0;
	for(; i < CDD_COUNT; i++){
		device_destroy(dev_class, dev+i);
		cdev_del(&(cdd_cdevp[i].cdev));
		//cdev_del(&((cdd_cdevp+i)->cdev));
	}
	class_destroy(dev_class);
	kfree(cdd_cdevp);
	unregister_chrdev_region(dev, CDD_COUNT);
	
}	

module_init(cdd_init);
module_exit(cdd_exit);

/**
*Copyright (c) 2013.TianYuan
*All rights reserved.
*
*文件名称: char_device_driver13_test0.c
*文件标识: 此程序运行r,此时发生阻塞,进入等待
*
*当前版本:1.0
*作者:wuyq 
*
*取代版本:xxx
*原作者:xxx
*完成日期:2013-11-29
*/
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>

/*手工创建设备节点文件
mknod /dev/cdd c 248 0
*/
int fd = 0;
char rbuf[100];
char wbuf[100] = "nihao!\n";


int main()
{
	char ch;
	
	fd = open("/dev/cdd0", O_RDWR);
	if(fd < 0){
		printf("open failed!\n");
		return -1;
	}
	printf("open successed fd = %d\n", fd);
	while(1)
	{
		printf("starting to test /dev/cdd...\n");
		ch = getchar();
		getchar();//取走回车
		if(ch == 'q'){
			break;
		}
		switch(ch){
			case 'r':
				memset(rbuf, 0, 100);//清空
				read(fd, rbuf, 3);
				printf("user space from kernel: %s\n", rbuf);
				break;
			case 'w':
				write(fd, wbuf, strlen(wbuf) );
				break;
			case 'o':
				ioctl(fd, 0, 0);
				break;
			case 'O':
				ioctl(fd, 1, 0);
				break;
			case 'p':
				ioctl(fd, 0, 1);
				break;
			case 'P':
				ioctl(fd, 1, 1);
				break;
			case 'l':
				lseek(fd, 0, SEEK_SET);//移动的文件的开头
				break;
				
			default:
				break;
		}
		sleep(1);
	}
	
	close(fd);
	return 0;
}

/**
*Copyright (c) 2013.TianYuan
*All rights reserved.
*
*文件名称: char_device_driver13_test1.c
*文件标识: test0 和 test1两个测试:此程序执行w,观察阻塞的r进程被唤醒,完成操作。
*
*当前版本:1.0
*作者:wuyq 
*
*取代版本:xxx
*原作者:xxx
*完成日期:2013-11-29
*/
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>

/*手工创建设备节点文件
mknod /dev/cdd c 248 0
*/
int fd = 0;
char rbuf[100];
char wbuf[100] = "nihao!\n";


int main()
{
	char ch;
	
	fd = open("/dev/cdd1", O_RDWR);
	if(fd < 0){
		printf("open failed!\n");
		return -1;
	}
	printf("open successed fd = %d\n", fd);
	while(1)
	{
		printf("starting to test /dev/cdd...\n");
		ch = getchar();
		getchar();//取走回车
		if(ch == 'q'){
			break;
		}
		switch(ch){
			case 'r':
				memset(rbuf, 0, 100);//清空
				read(fd, rbuf, 3);
				printf("user space from kernel: %s\n", rbuf);
				break;
			case 'w':
				write(fd, wbuf, strlen(wbuf) );
				break;
			case 'o':
				ioctl(fd, 0, 0);
				break;
			case 'O':
				ioctl(fd, 1, 0);
				break;
			case 'p':
				ioctl(fd, 0, 1);
				break;
			case 'P':
				ioctl(fd, 1, 1);
				break;
			case 'l':
				lseek(fd, 0, SEEK_SET);//移动的文件的开头
				break;
				
			default:
				break;
		}
		sleep(1);
	}
	
	close(fd);
	return 0;
}



目录
相关文章
|
1月前
|
安全 Linux 测试技术
Intel Linux 内核测试套件-LKVS介绍 | 龙蜥大讲堂104期
《Intel Linux内核测试套件-LKVS介绍》(龙蜥大讲堂104期)主要介绍了LKVS的定义、使用方法、测试范围、典型案例及其优势。LKVS是轻量级、低耦合且高代码覆盖率的测试工具,涵盖20多个硬件和内核属性,已开源并集成到多个社区CICD系统中。课程详细讲解了如何使用LKVS进行CPU、电源管理和安全特性(如TDX、CET)的测试,并展示了其在实际应用中的价值。
|
1月前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
111 15
|
3月前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
89 26
|
2月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
2月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
2月前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
2月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
2月前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
60 3
|
2月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
3月前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
102 1