一起谈.NET技术,VS2010实践RUP4+1架构模型

简介:   RUP4+1架构方法  RUP4+1架构方法采用用例驱动,在软件生命周期的各个阶段对软件进行建模,从不同视角对系统进行解读,从而形成统一软件过程架构描述.                 图 1. RUP4+1架构图  用例视图(Use Cases View),最初称为场景视图,关注最终用户需求,为整个技术架构的上线文环境.通常用UML用例图和活动图描述。

  RUP4+1架构方法

  RUP4+1架构方法采用用例驱动,在软件生命周期的各个阶段对软件进行建模,从不同视角对系统进行解读,从而形成统一软件过程架构描述.

                 

图 1. RUP4+1架构图

  用例视图(Use Cases View),最初称为场景视图,关注最终用户需求,为整个技术架构的上线文环境.通常用UML用例图和活动图描述。

  逻辑视图(Logical view),主要整个系统的抽象结构表述主要关注系统提供最终用户的功能,不涉及具体的编译即输出和部署,通常在UML中用类图,交互图,时序图来表述,类似与我们采用OOA的对象模型。

  开发视图(Development View), 描述软件在开发环境下的静态组织,从程序实现人员的角度透视系统,也叫做实现视图(implementation view).开发视图关注程序包,不仅包括要编写的源程序,还包括可以直接使用的第三方SDK和现成框架、类库,以及开发的系统将运行于其上的系统软件或中间件, 在UML中用组件图,包图来表述. 开发视图和逻辑视图之间可能存在一定的映射关系:比如逻辑层一般会映射到多个程序包等。

  处理视图(Process view)处理视图关注系统动态运行时,主要是进程以及相关的并发、同步、通信等问题。处理视图和开发视图的关系:开发视图一般偏重程序包在编译时期的静态依赖关系,而这些程序运行起来之后会表现为对象、线程、进程,处理视图比较关注的正是这些运行时单元的交互问题,在UML中通常用活动图表述。

  物理视图(Physical view )物理视图通常也叫做部署视图(deployment view),是从系统工程师解读系统,关注软件的物流拓扑结,以及如何部署机器和网络来配合软件系统的可靠性、可伸缩性等要求。物理视图和处理视图的关系:处理视图特别关注目标程序的动态执行情况,而物理视图重视目标程序的静态位置问题;物理视图是综合考虑软件系统和整个IT系统相互影响的架构视图。

  RUP4+1架构方法从1995年提出后在业界获得广泛应用,并得以发展完善,在具体应用的时候结合公司环境和项目实际进行适当裁剪。

  微软VSTS2010 UML增强

  Visual Studio 2010绝对不是单一的一个IDE环境, 将应用程序开发生命周期的方方面面与 Team Foundation Server 集成, VS2010提供了相对完备的UML开发软件设计模型功能。目前VS2010支持新建UML模型如下包:  

UML关系图

主要作用

活动图

业务流程中的操作和参与者之间的工作流

组件图

系统的组件、组件的接口、端口和关系

类图

用于在系统中存储和交换数据的类型及其关系

序列图

对象、组件、系统或参与者之间的交互序列

用例图

系统支持的用户目标和任务

  而且微软提供了VS2010旗舰版的可视化建模功能包,加强UML建模能力和便捷性。

  实现RUP4+1架构案例背景说明

  IDM是一家家电制造商,目前企业已经有ERP系统,外部系统可以通过JDBC访问该系统授权的数据,同时该公司的有电子邮件系统也提供SMTP方式让外部程序调用。该公司计划开发一个电子化采购系统(EPS),基本需求如下:

IDM生产计划在ERP设定后,会自动产生原料请购记录到EPS,EPS自动产生采购要求(Request For Purchase;RFP),并利用短信系统已经电子邮件通知注册的供应商。

  供应商收到通知后必须先到IDM的EPS中在采购要求规定的时间内提供报价单

  IDM的采购人员(Buyer)通过EPS比价策略进行供应商选择产两家供应商并生采购单,同时通过短信和邮件通知该两家供应商。

  供应商收到短信后,若要确认供货,到EPS中确认采购单,EPS通过电子邮件通知该采购负责人(Buyer)

  采购人员在EPS中确认该采购后,EPS回传该订单到IDM的ERP系统中和该两家供应商。

  用例视图

  根据需求初步描述,抽象出该采购系统涉及的角色有IDM的EPR系统,采购人员(Buyer),供应商涉及用例有产生采购需求,确定供应商,报价等。步骤如下:

  1.打开VS2010,新建项目,选择建模项目,并合理命名和解决方案位置,点击确定。

  2.添加新项,选择添加新项目,选择UML用例图并命名,点击确定下一步

  3.从工具箱中拖入如图各个用例和角色,并命名

  4.按Crtl+S保存,在迭代开发过程中做到这一步和用户进一步沟通,发现IDM公司已经有通知系统平台可以调用发送短信和邮件通知,同时,采购人员分为采购经理和普通职员,采购确认由采购经理完成。用例图进一步调整如下:

  5.图例说明:在系统中,用例送货位于系统边界外,不作为系统开发范围,其存在为了更好的解释系统的流程的完整行, 参与者不一定是人,ERP和通知系统作为参与者存在,另外比价作为单独用例存在意义不大,细心的读者可能会问 “产生原料请购记录”怎么没有作为系统用例存在?分析下可知,“产生原料请购记录“是ERP功能,EPS承担转化 “请购记录”到“采购请求”功能,因此没有作为EPS用例出现。 更多的关于用例分析请参考《Think in UML大象》

目录
相关文章
|
18天前
|
弹性计算 负载均衡 网络协议
阿里云SLB深度解析:从流量分发到架构优化的技术实践
本文深入探讨了阿里云负载均衡服务(SLB)的核心技术与应用场景,从流量分配到架构创新全面解析其价值。SLB不仅是简单的流量分发工具,更是支撑高并发、保障系统稳定性的智能中枢。文章涵盖四层与七层负载均衡原理、弹性伸缩引擎、智能DNS解析等核心技术,并结合电商大促、微服务灰度发布等实战场景提供实施指南。同时,针对性能调优与安全防护,分享连接复用优化、DDoS防御及零信任架构集成的实践经验,助力企业构建面向未来的弹性架构。
161 76
|
7天前
|
存储 消息中间件 SQL
数据中台架构与技术体系
本文介绍了数据中台的整体架构设计,涵盖数据采集、存储、计算、服务及治理等多个层面。在数据采集层,通过实时与离线方式整合多类型数据源;存储层采用分层策略,包括原始层、清洗层、服务层和归档层,满足不同访问频率需求;计算层提供批处理、流处理、交互式分析和AI计算能力,支持多样化业务场景。数据服务层封装数据为标准化API,实现灵活调用,同时强调数据治理与安全,确保元数据管理、质量监控、权限控制及加密措施到位,助力企业构建高效、合规的数据管理体系。
|
2天前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。
|
3天前
|
存储 人工智能 开发框架
MCP 实践:基于 MCP 架构实现知识库答疑系统
文章探讨了AI Agent的发展趋势,并通过一个实际案例展示了如何基于MCP(Model Context Protocol)开发一个支持私有知识库的问答系统。
MCP 实践:基于 MCP 架构实现知识库答疑系统
|
19天前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
103 12
|
13天前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
228 4
|
4月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
5月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
127 3
|
5月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
4月前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
426 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型
下一篇
oss创建bucket