C++ 11右值引用

简介: C++ 11中引入的一个非常重要的概念就是右值引用。理解右值引用是学习“移动语义”(move semantics)的基础。而要理解右值引用,就必须先区分左值与右值。       对左值和右值的一个最常见的误解是:等号左边的就是左值,等号右边的就是右值。

C++ 11中引入的一个非常重要的概念就是右值引用。理解右值引用是学习“移动语义”(move semantics)的基础。而要理解右值引用,就必须先区分左值与右值。
       对左值和右值的一个最常见的误解是:等号左边的就是左值,等号右边的就是右值。左值和右值都是针对表达式而言的,左值是指表达式结束后依然存在的持久对 象,右值是指表达式结束时就不再存在的临时对象。一个区分左值与右值的便捷方法是:看能不能对表达式取地址,如果能,则为左值,否则为右值。下面给出一些 例子来进行说明。

复制代码
  int a =  10;
  int b =  20;
  int *pFlag = &a;
 vector< int> vctTemp;
 vctTemp.push_back( 1);
  string str1 =  " hello  ";
  string str2 =  " world ";
  const  int &m =  1;
复制代码

       请问,a,b, a+b, a++, ++a, pFlag, *pFlag, vctTemp[0], 100, string("hello"), str1, str1+str2, m分别是左值还是右值?
           a和b都是持久对象(可以对其取地址),是左值;
           a+b是临时对象(不可以对其取地址),是右值;
           a++是先取出持久对象a的一份拷贝,再使持久对象a的值加1,最后返回那份拷贝,而那份拷贝是临时对象(不可以对其取地址),故其是右值;
           ++a则是使持久对象a的值加1,并返回那个持久对象a本身(可以对其取地址),故其是左值;
           pFlag和*pFlag都是持久对象(可以对其取地址),是左值;
           vctTemp[0]调用了重载的[]操作符,而[]操作符返回的是一个int &,为持久对象(可以对其取地址),是左值;
           100和string("hello")是临时对象(不可以对其取地址),是右值;
           str1是持久对象(可以对其取地址),是左值;
           str1+str2是调用了+操作符,而+操作符返回的是一个string(不可以对其取地址),故其为右值;
           m是一个常量引用,引用到一个右值,但引用本身是一个持久对象(可以对其取地址),为左值。
      区分清楚了左值与右值,我们再来看看左值引用。左值引用根据其修饰符的不同,可以分为非常量左值引用和常量左值引用。
      非常量左值引用只能绑定到非常量左值,不能绑定到常量左值、非常量右值和常量右值。如果允许绑定到常量左值和常量右值,则非常量左值引用可以用于修改常量 左值和常量右值,这明显违反了其常量的含义。如果允许绑定到非常量右值,则会导致非常危险的情况出现,因为非常量右值是一个临时对象,非常量左值引用可能 会使用一个已经被销毁了的临时对象。
      常量左值引用可以绑定到所有类型的值,包括非常量左值、常量左值、非常量右值和常量右值。
      可以看出,使用左值引用时,我们无法区分出绑定的是否是非常量右值的情况。那么,为什么要对非常量右值进行区分呢,区分出来了又有什么好处呢?这就牵涉到C++中一个著名的性能问题——拷贝临时对象。考虑下面的代码:

复制代码
vector< int> GetAllScores()
{
 vector< int> vctTemp;
 vctTemp.push_back( 90);
 vctTemp.push_back( 95);
  return vctTemp;
}
复制代码

       当使用vector<int> vctScore = GetAllScores()进行初始化时,实际上调用了三次构造函数。尽管有些编译器可以采用RVO(Return Value Optimization)来进行优化,但优化工作只在某些特定条件下才能进行。可以看到,上面很普通的一个函数调用,由于存在临时对象的拷贝,导致了额 外的两次拷贝构造函数和析构函数的开销。当然,我们也可以修改函数的形式为void GetAllScores(vector<int> &vctScore),但这并不一定就是我们需要的形式。另外,考虑下面字符串的连接操作:

  string s1( " hello ");
  string s = s1 +  " a " +  " b " +  " c " +  " d " +  " e ";

       在对s进行初始化时,会产生大量的临时对象,并涉及到大量字符串的拷贝操作,这显然会影响程序的效率和性能。怎么解决这个问题呢?如果我们能确定某个值是 一个非常量右值(或者是一个以后不会再使用的左值),则我们在进行临时对象的拷贝时,可以不用拷贝实际的数据,而只是“窃取”指向实际数据的指针(类似于 STL中的auto_ptr,会转移所有权)。C++ 11中引入的右值引用正好可用于标识一个非常量右值。C++ 11中用&表示左值引用,用&&表示右值引用,如:

  int &&a =  10

       右值引用根据其修饰符的不同,也可以分为非常量右值引用和常量右值引用。
       非常量右值引用只能绑定到非常量右值,不能绑定到非常量左值、常量左值和常量右值(VS2010 beta版中可以绑定到非常量左值和常量左值,但正式版中为了安全起见,已不允许)。如果允许绑定到非常量左值,则可能会错误地窃取一个持久对象的数据, 而这是非常危险的;如果允许绑定到常量左值和常量右值,则非常量右值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。
       常量右值引用可以绑定到非常量右值和常量右值,不能绑定到非常量左值和常量左值(理由同上)。
       有了右值引用的概念,我们就可以用它来实现下面的CMyString类。

复制代码
class CMyString
{
public:
     //  构造函数
 CMyString( const  char *pszSrc = NULL)
 {
  cout <<  " CMyString(const char *pszSrc = NULL) " << endl;
   if (pszSrc == NULL)
  {
   m_pData =  new  char[ 1];
   *m_pData =  ' \0 ';
  }
   else
  {
   m_pData =  new  char[strlen(pszSrc)+ 1];
   strcpy(m_pData, pszSrc);
  }
 }

     //  拷贝构造函数
 CMyString( const CMyString &s)
 {
  cout <<  " CMyString(const CMyString &s) " << endl;
  m_pData =  new  char[strlen(s.m_pData)+ 1];
  strcpy(m_pData, s.m_pData);
 }

     //  move构造函数
 CMyString(CMyString &&s)
 {
  cout <<  " CMyString(CMyString &&s) " << endl;
  m_pData = s.m_pData;
  s.m_pData = NULL;
 }

     //  析构函数
 ~CMyString()
 {
  cout <<  " ~CMyString() " << endl;
  delete [] m_pData;
  m_pData = NULL;
 }

     //  拷贝赋值函数
 CMyString & operator =( const CMyString &s)
 {
  cout <<  " CMyString &operator =(const CMyString &s) " << endl;
   if ( this != &s)
  {
   delete [] m_pData;
   m_pData =  new  char[strlen(s.m_pData)+ 1];
   strcpy(m_pData, s.m_pData);
  }
   return * this;
 }

     //  move赋值函数
 CMyString & operator =(CMyString &&s)
 {
  cout <<  " CMyString &operator =(CMyString &&s) " << endl;
   if ( this != &s)
  {
   delete [] m_pData;
   m_pData = s.m_pData;
   s.m_pData = NULL;
  }
   return * this;
 }

private:
  char *m_pData;
};
复制代码

     可以看到,上面我们添加了move版本的构造函数和赋值函数。那么,添加了move版本后,对类的自动生成规则有什么影响呢?唯一的影响就是,如果提供了 move版本的构造函数,则不会生成默认的构造函数。另外,编译器永远不会自动生成move版本的构造函数和赋值函数,它们需要你手动显式地添加。
        当添加了move版本的构造函数和赋值函数的重载形式后,某一个函数调用应当使用哪一个重载版本呢?下面是按照判决的优先级列出的3条规则:
             1、常量值只能绑定到常量引用上,不能绑定到非常量引用上。
             2、左值优先绑定到左值引用上,右值优先绑定到右值引用上。
             3、非常量值优先绑定到非常量引用上。
        当给构造函数或赋值函数传入一个非常量右值时,依据上面给出的判决规则,可以得出会调用move版本的构造函数或赋值函数。而在move版本的构造函数或 赋值函数内部,都是直接“移动”了其内部数据的指针(因为它是非常量右值,是一个临时对象,移动了其内部数据的指针不会导致任何问题,它马上就要被销毁 了,我们只是重复利用了其内存),这样就省去了拷贝数据的大量开销。
        一个需要注意的地方是,拷贝构造函数可以通过直接调用*this = s来实现,但move构造函数却不能。这是因为在move构造函数中,s虽然是一个非常量右值引用,但其本身却是一个左值(是持久对象,可以对其取地 址),因此调用*this = s时,会使用拷贝赋值函数而不是move赋值函数,而这已与move构造函数的语义不相符。要使语义正确,我们需要将左值绑定到非常量右值引用上,C++ 11提供了move函数来实现这种转换,因此我们可以修改为*this = move(s),这样move构造函数就会调用move赋值函数。

相关文章
|
6月前
|
算法 编译器 程序员
【C/C++ 解惑 】 std::move 将左值转换为右值的背后发生了什么?
【C/C++ 解惑 】 std::move 将左值转换为右值的背后发生了什么?
64 0
|
2月前
|
编译器 C++
C++ 11新特性之右值引用
C++ 11新特性之右值引用
40 1
|
6月前
|
编译器 C语言 C++
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值(中)
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值
35 1
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值(中)
|
6月前
|
存储 安全 C语言
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值(上)
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值
31 2
|
6月前
|
编译器 C语言 C++
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值(下)
从C语言到C++_33(C++11_上)initializer_list+右值引用+完美转发+移动构造/赋值
34 1
|
5月前
|
编译器 C++ 开发者
C++一分钟之-右值引用与完美转发
【6月更文挑战第25天】C++11引入的右值引用和完美转发增强了资源管理和模板灵活性。右值引用(`&&`)用于绑定临时对象,支持移动语义,减少拷贝。移动构造和赋值允许有效“窃取”资源。完美转发通过`std::forward`保持参数原样传递,适用于通用模板。常见问题包括误解右值引用只能绑定临时对象,误用`std::forward`,忽视`noexcept`和过度使用`std::move`。高效技巧涉及利用右值引用优化容器操作,使用完美转发构造函数和创建通用工厂函数。掌握这些特性能提升代码效率和泛型编程能力。
45 0
|
6月前
|
编译器 C++ 容器
【C++11(一)】右值引用以及列表初始化
【C++11(一)】右值引用以及列表初始化
|
6月前
|
存储 安全 程序员
C++11:右值引用
C++11:右值引用
37 0
|
6月前
|
存储 算法 程序员
【C++入门到精通】右值引用 | 完美转发 C++11 [ C++入门 ]
【C++入门到精通】右值引用 | 完美转发 C++11 [ C++入门 ]
50 0
|
6月前
|
存储 人工智能 编译器
【重学C++】【引用】一文看懂引用的本质与右值引用存在的意义
【重学C++】【引用】一文看懂引用的本质与右值引用存在的意义
131 0