不相交集(The Disjoint Set ADT)

简介: 0)引论 不相交集是解决等价问题的一种有效的数据结构,之所以称之为有效是因为,这个数据结构简单(几行代码,一个简单数组就可以搞定),快速(每个操作基本上可以在常数平均时间内搞定)。 首先我们要明白什么叫做等价关系,而在这个之前要先有一个关系(relation)的定义 Relation:定义在数据集S上的关系R是指,对于属于数据集S中的每一对元素(a,b),a R b要么是真要么是假。

0)引论

不相交集是解决等价问题的一种有效的数据结构,之所以称之为有效是因为,这个数据结构简单(几行代码,一个简单数组就可以搞定),快速(每个操作基本上可以在常数平均时间内搞定)。

首先我们要明白什么叫做等价关系,而在这个之前要先有一个关系(relation)的定义

Relation:定义在数据集S上的关系R是指,对于属于数据集S中的每一对元素(a,b),a R b要么是真要么是假。如果a R b为真,就说a related b,即a与b相关。

等价关系也是一种关系(Relation),只不过是要满足一些约束条件

a) a R a,对于所有属于S的a

b) a R b 当且仅当 b R a

c) a R b 并且 b R a 意味着 a R c

动态等价性问题:

定义在非空集合S上的关系R,对于任意属于数据集S中的每一对元素(a,b),确定a R b是否为真,也就是说a与b是否有关系。

而对于a与b是否有关系,我们只需要证明a与b是否在同一个等价类集合中。

 

 

1)基本结构

Find操作:返回给定元素的集合的名字,也就是检查a,b是否在同一个等价类中。对于Find运算,最重要的是判断Find(a,S) == Find(b,S)是否成立。

Union操作:如果a,b不在一个等价类中,可以用Union操作把这连个等价类合并为一个等价类。

我们可以用tree结构来表示一个集合,root可以表示集合的名字。由于仅有上面的两个操作而没有顺序信息,因此我们可以将所有的元素用1-N编号,编号可以用hashing方法。

 

进一步可以发现对于这两个操作无法使其同时达到最优,也就是说当Find以常数最坏时间运行时,Union操作会很慢,同理颠倒过来。因此就有了2种实现方式。

a)使Find运行快

在数组中保存每个元素的等价类的名字,将所有等价类的元素放到一个链表中

b)使Union运行快

使用树来表示每一个集合,根节点表示集合的名字。数组元素P[i]表示元素i的父亲,若i为root,则P[i]=0。

对于Union操作,相当于把连个树合并,也就是指针的移动,如下图所示:

 

typedef int DisjSet[NumSets+1];
typedef int SetType;

void initialize(DisjSet S)
{
    int i;
    for(i=NumSets;i>0;i--)
        s[i]=0;
}
void SetUnion(DisjSet S, SetType Root1, SetType Root2)
{
    S[Root2] = Root1;
}

SetType Find(ElementType X, DisjSet S)
{
    if(S[x]<=0)
        return x;
    else
        return Find(S[x],S);
}

对于Find操作就是一个不断返回父节点知道找到根节点的递归过程。

 

 

2)灵巧合并算法

上面的合并算法相当随意,它就是把第二棵树作为第一棵树的子树来完成合并操作。有一个简单的改进方法是总是让较小的树成为较大的树的子树,这种方法叫做Union-by-Size,如下图所示Union-by-Size可以降低树的深度,每个节点的深度都不会超过O(logN)。

为了实现这种方法,必须记录每一棵树的大小。我们可以另每一个根节点的数组元素表示树的大小的赋值,非根节点不变,依旧表示其父节点。这其实是把上面方法的数组中的0的位置做了一些利用。

 

另一种方法是Union-by-Height,也就是说我们把高度较浅的树作为高度较深的树的子树。亦即根节点记录的是树的高度的负值。

 

Union-by-Height的Union代码实现

void SetUnion(DisjSet S, SetType Root1, SetType Root2)
{
    //add the low height tree to the high height tree.
    if(S[Root2]<S[Root1])
        S[Root1] = Root2;
    else
    {
        if(S[Root1] = S[Root2]) //same height
            S[Root1]--;
        S[Root2] = Root1;
    }
}

3)路径压缩

 

随着树的加深,Find操作的时间会增加。如果Find操作比Union操作多的多的话,那么运算时间会相当糟糕,比快速查找还要差。而且从上面可以看出,Union算法的改进比较困难,因此我们应该尝试去使Find更加高效。这就引入了path compression。

路径压缩:在Find操作期间执行与Union操作无关,路径压缩的效果是从X到根节点的路径上的每一个结点都使它的父节点成为根节点。

 

代码实现:

SetType Find(ElementType X, DisjSet S)  
{  
    if(S[x]<=0)  
        return x;  
    else  
        return S[x] = Find(S[x],S);  
}  

和上面相比,代码只有一点点小修改。

 

路径压缩算法是与Union-by-Size相兼容的,与Union-by-Height并不完全兼容。

 

 

4)小应用

说了这么多,这个数据结构总要有点用处啊,否则就没有什么意义了。

一个例子是计算机网络和双向连接表,每一个连接将文件从一个计算机传递到另一个计算机。现在的问题是能否将文件从任意一个计算机传递到另一个任意的计算机,并且这个问题要on-line解决。

解决这个问题,就可以用到上面的数据结构。开始阶段我们可以把每一台计算机放到他自己的集合中,要求两台计算机传递文件当且仅当这两台计算机在同一个集合中。因此传输文件能力相当于一个等价关系。当我们需要传输文件时,检验两个计算机是否在同一个集合里,是的话就传输文件,否的话,就用Union方法把它们合并到一个集合中,然后传输文件。

 

 

5)总结

不相交集是一个非常简单的数据结构,仅用几行代码就可以搞定。对于Find操作,重要的是Find(a,S) == Find(b,S)为真还是假。Union操作有很多种实现,比较灵活。为了节省Find操作的时间,引入了路径压缩算法,这是自调整(self-adjustment)的最早形式之一。

相关文章
|
6月前
|
机器学习/深度学习 NoSQL 容器
并查集(Disjoint Set)
并查集(Disjoint Set)
|
15天前
|
开发者
除了交集运算,Set 类型还可以用于哪些数据结构的操作?
【10月更文挑战第30天】`Set`类型在数据结构操作方面提供了丰富的功能和便利,能够帮助开发者更高效地处理各种数据集合相关的任务,提高代码的简洁性和性能。
|
15天前
|
算法 JavaScript 前端开发
使用 Set 类型实现数组的交集运算
【10月更文挑战第30天】使用 `Set` 类型实现数组的交集运算是一种常见且有效的方法,它为我们处理数据集合的运算提供了一种便捷的途径。通过合理地运用这种方法,我们可以轻松地实现数组的交集计算,并在各种编程任务中灵活运用。
|
1月前
|
存储 Python
Python多个set中的交集
Python多个set中的交集
|
5月前
|
算法 Java
并查集(Disjoint Set)
并查集(Disjoint Set)
39 1
|
4月前
|
存储 NoSQL Java
Redis10------Set类型,存在着无序的特征存储的顺序和插入的顺序是无关的,set集合的一大特点是不可重复,在redis中支持交集插集等特殊功能,好友列表,共同关注等等
Redis10------Set类型,存在着无序的特征存储的顺序和插入的顺序是无关的,set集合的一大特点是不可重复,在redis中支持交集插集等特殊功能,好友列表,共同关注等等
|
6月前
|
算法 Python
Python高级数据结构——并查集(Disjoint Set)
Python高级数据结构——并查集(Disjoint Set)
285 2
|
Windows
L2-005 集合相似度(vector、set求并交集)
L2-005 集合相似度(vector、set求并交集)
118 0
|
存储 JavaScript 前端开发
JavaScript中的Set数据操作:交集、差集、交集、对称差集
在许多情况下,需要比较多个列表,获取它们有或没有交集、差集等等,在 Javascript 有一个数据类型可以很好的实现这些需求,那就是 Set 。
364 0
重学ES系列之Set实现数组去重、交集、并集、差集
重学ES系列之Set实现数组去重、交集、并集、差集

热门文章

最新文章