邻接矩阵有向图的介绍

简介: 邻接矩阵有向图的介绍 邻接矩阵有向图是指通过邻接矩阵表示的有向图。 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了",,,,,,,,"共9条边。 上图右边的矩阵是G2在内存中的邻接矩阵示意图。

邻接矩阵有向图的介绍

邻接矩阵有向图是指通过邻接矩阵表示的有向图。

上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。

上图右边的矩阵是G2在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点到第j个顶点是一条边,A[i][j]=0则表示不是一条边;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)到第2个顶点(C)是一条边。

邻接矩阵有向图的代码说明

1. 基本定义

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

Graph是邻接矩阵对应的结构体。

vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

2. 创建矩阵

C实现代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<malloc.h>
#define MAX 100
typedef struct graph
{
    char vexs[MAX];
    int vexnum;
    int edgnum;
    int matrix[MAX][MAX];
} Graph,*graph;

static int get_position(Graph g,char ch)
{
    int i;
    for(i=0;i<g.vexnum;i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

graph create_graph()
{
    char vexs[]= {'A','B','C','D','E','F','G'};
    char edges[][2]= {{'A','C'},{'A','D'},{'A','F'},{'B','C'},{'C','D'},{'E','G'},{'F','G'}};
    int vlen=sizeof(vexs)/sizeof(vexs[0]);
    int  elen=sizeof(edges)/sizeof(edges[0]);
    int i,p1,p2;
    Graph *pG;
    if((pG=(graph)malloc(sizeof(Graph)))==NULL)
        return NULL;
    pG->edgnum=elen;
    pG->vexnum=vlen;
    for(i=0;i<pG->vexnum;i++)
        pG->vexs[i]=vexs[i];
    for(i=0;i<pG->edgnum;i++)
    {
        p1=get_position(*pG,edges[i][0]);
        p2=get_position(*pG,edges[i][1]);
        pG->matrix[p1][p2]=1;
    }
    return pG;
}

void print_graph(Graph G)
{
    int i,j;
    for(i=0;i<G.vexnum;i++)
    {
        for(j=0;j<G.edgnum;j++)
        {
            printf("%d ",G.matrix[i][j]);
        }
        printf("\n");
    }
    printf("\n");
}

int main()
{
    Graph *pG;
    pG=create_graph();
    print_graph(*pG);
}

运行结果:

相关文章
|
Java Spring
解决方案 --[restartedMain] o.s.b.d.LoggingFailureAnalysisReporter :
Error starting ApplicationContext. To display the conditions report re-run your application with 'debug' enabled. ERROR 9680 --- [ restartedMain] o.s.b.d.LoggingFailureAnalysisReporter
|
存储 算法
有向图和无向图的表示方式(邻接矩阵,邻接表)
有向图和无向图的表示方式(邻接矩阵,邻接表)
2213 0
|
存储 C++
C++职工管理系统(课程设计报告(一)
C++职工管理系统(课程设计报告)
|
2天前
|
存储 弹性计算 人工智能
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
2025年9月24日,阿里云弹性计算团队多位产品、技术专家及服务器团队技术专家共同在【2025云栖大会】现场带来了《通用计算产品发布与行业实践》的专场论坛,本论坛聚焦弹性计算多款通用算力产品发布。同时,ECS云服务器安全能力、资源售卖模式、计算AI助手等用户体验关键环节也宣布升级,让用云更简单、更智能。海尔三翼鸟云服务负责人刘建锋先生作为特邀嘉宾,莅临现场分享了关于阿里云ECS g9i推动AIoT平台的场景落地实践。
【2025云栖精华内容】 打造持续领先,全球覆盖的澎湃算力底座——通用计算产品发布与行业实践专场回顾
|
4天前
|
云安全 数据采集 人工智能
古茗联名引爆全网,阿里云三层防护助力对抗黑产
阿里云三层校验+风险识别,为古茗每一杯奶茶保驾护航!
古茗联名引爆全网,阿里云三层防护助力对抗黑产
|
4天前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
534 2
kde
|
4天前
|
人工智能 关系型数据库 PostgreSQL
n8n Docker 部署手册
n8n是一款开源工作流自动化平台,支持低代码与可编程模式,集成400+服务节点,原生支持AI与API连接,可自托管部署,助力团队构建安全高效的自动化流程。
kde
362 3
|
2天前
|
Linux 虚拟化 iOS开发
VMware Workstation Pro 25H2 for Windows & Linux - 领先的免费桌面虚拟化软件
VMware Workstation Pro 25H2 for Windows & Linux - 领先的免费桌面虚拟化软件
754 4
VMware Workstation Pro 25H2 for Windows & Linux - 领先的免费桌面虚拟化软件