C++关于一个函数中new内存泄露的列子

简介: 首先明白几个基础 1、函数按值传递和按值返回的时候都会调用复制构造函数 2、一般在函数体内定义的栈变量是不能返回其地址或者引用给主调函数的,因为在函数结束的时候这些栈变量将释放 3、可以使用new的方式建立堆内存的方式,然后返回引用或者指针,因为new这种方式建立的堆内存并不随函数的结束而结束,      而指针变量释放但是指针本生的值已经返回。
首先明白几个基础
1、函数按值传递和按值返回的时候都会调用复制构造函数
2、一般在函数体内定义的栈变量是不能返回其地址或者引用给主调函数的,因为在函数结束的时候这些栈变量将释放
3、可以使用new的方式建立堆内存的方式,然后返回引用或者指针,因为new这种方式建立的堆内存并不随函数的结束而结束,
     而指针变量释放但是指针本生的值已经返回。同时也可以按值放回,但是这种情况下将可能出现内存泄露
来看下面的代码

点击(此处)折叠或打开

  1. /*************************************************************************
  2.     > File Name: testcc.cpp
  3.     > Author: gaopeng
  4.     > Mail: gaopp_200217@163.com
  5.     > Created Time: Thu 01 Sep 2016 09:06:53 PM CST
  6.  ************************************************************************/

  7. #include<iostream>
  8. using namespace std;


  9. class testa
  10. {
  11.         private:
  12.                 int i;
  13.         public:
  14.                 testa(const int m){
  15.                         cout<<"create a object\n";
  16.                         i=m;
  17.                 }
  18.                 const int& geti() const {
  19.                         return i;
  20.                 }
  21.                 testa(const testa& m ){
  22.                         cout<<"copy funcation\n";
  23.                         i=m.i;
  24.                 }
  25.                 ~testa(){
  26.                         cout<<"discard a object\n";
  27.                 }
  28.                 testa operator=(const testa& c)
  29.                 {
  30.                         cout<<"= funcation\n";
  31.                         i = c.i;
  32.                 }

  33. };

  34. testa func()
  35. {
  36.         cout<<"in func function\n";
  37.         //testa p(10);
  38.         testa* p = new testa(1);
  39.         cout<<p<<endl;
  40.         cout<<"end func\n";
  41.         return *p;
  42. }


  43. int main(void)
  44. {
  45.         testa m = func(); //copy
  46.         cout<<&m<<endl;
  47.         cout<<m.geti()<<endl;
  48.         return 0;
  49. }
程序说明:
这里 testa *  p  =  new testa ( 1 ) ;建立一块堆内存
这里 return  * p ;按值返回,按值返回会调用复制构造函数给值赋予给新建个对象m
程序结束后调用m的析构函数,但是这里new出来的内存空间已经没有可以指向的指针
因为p已经释放,而返回的是*p,这块内存已经泄露。我们跑一下看看:
in func function   --调用func函数
create a object   --new创建的testa的堆内存  testa *  p  =  new testa ( 1 ) ;
0x1914010        --new的地址  cout < < p < < endl ;
end func           --结束func函数  cout < < "end func\n" ;
copy funcation   --按值返回调用复制构造函数,将值赋予给新的变量 m  testa m  =  func ( ) ;
0x7fffb9c438a0  --新对象m的地址 cout < < & m < < endl ;
1
discard a object  --析构函数释放栈对象m的空间

这里我们发现new的堆内存空间没有被析构,那么内存已经泄露。
那么我们怎么不大量改变程序的情况下来消除这种问题呢
当然是使用指针或者引用来返回

点击(此处)折叠或打开

  1. testa* func()
  2. {
  3.         cout<<"in func function\n";
  4.         //testa p(10);
  5.         testa* p = new testa(1);
  6.         cout<<p<<endl;
  7.         cout<<"end func\n";
  8.         return p;
  9. }


  10. int main(void)
  11. {
  12.         {
  13.                 testa* m = func(); //copy
  14.                 cout<<m<<endl;
  15.                 cout<<m->geti()<<endl;
  16.                 delete m;
  17.         }
  18.         return 0;
  19. }
这一在main中我把定义m指针到删除放到了一个block中,这样在block结束的时候就释放了m避免了空指针的存在。
下面是引用

点击(此处)折叠或打开

  1. testa& func()
  2. {
  3.         cout<<"in func function\n";
  4.         //testa p(10);
  5.         testa* p = new testa(1);
  6.         cout<<p<<endl;
  7.         cout<<"end func\n";
  8.         return *p;
  9. }


  10. int main(void)
  11. {
  12.         {
  13.                 testa& m = func(); //copy
  14.                 cout<<&m<<endl;
  15.                 cout<<m.geti()<<endl;
  16.                 delete &m;
  17.         }
  18.         return 0;
  19. }
同样main中的这个程序块是为了避免空引用
输出如下:
in func function  
create a object
0x1989010
end func
0x1989010   
1
discard a object

可以看到地址都相同,最后的析构函数是我调用delete执行的。



相关文章
|
4月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
186 26
|
4月前
|
安全 C语言
C语言中的字符、字符串及内存操作函数详细讲解
通过这些函数的正确使用,可以有效管理字符串和内存操作,它们是C语言编程中不可或缺的工具。
312 15
|
9月前
|
存储 程序员 编译器
玩转C++内存管理:从新手到高手的必备指南
C++中的内存管理是编写高效、可靠程序的关键所在。C++不仅继承了C语言的内存管理方式,还增加了面向对象的内存分配机制,使得内存管理既有灵活性,也更加复杂。学习内存管理不仅有助于提升程序效率,还有助于理解计算机的工作原理和资源分配策略。
|
5月前
|
C语言 C++
c与c++的内存管理
再比如还有这样的分组: 这种分组是最正确的给出内存四个分区名字:栈区、堆区、全局区(俗话也叫静态变量区)、代码区(也叫代码段)(代码段又分很多种,比如常量区)当然也会看到别的定义如:两者都正确,记那个都选,我选择的是第一个。再比如还有这样的分组: 这种分组是最正确的答案分别是 C C C A A A A A D A B。
103 1
|
5月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
156 0
|
8月前
|
存储 Linux C语言
C++/C的内存管理
本文主要讲解C++/C中的程序区域划分与内存管理方式。首先介绍程序区域,包括栈(存储局部变量等,向下增长)、堆(动态内存分配,向上分配)、数据段(存储静态和全局变量)及代码段(存放可执行代码)。接着探讨C++内存管理,new/delete操作符相比C语言的malloc/free更强大,支持对象构造与析构。还深入解析了new/delete的实现原理、定位new表达式以及二者与malloc/free的区别。最后附上一句鸡汤激励大家行动缓解焦虑。
|
8月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
468 6
|
9月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
439 0
|
9月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。

热门文章

最新文章