Python进阶09 动态类型

简介: 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢! 谢谢TeaEra, 猫咪cat   动态类型(dynamic typing)是Python另一个重要的核心概念。

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

谢谢TeaEra, 猫咪cat

 

动态类型(dynamic typing)是Python另一个重要的核心概念。我们之前说过,Python的变量(variable)不需要声明,而在赋值时,变量可以重新赋值为任意值。这些都与动态类型的概念相关。

 

动态类型

在我们接触的对象中,有一类特殊的对象,是用于存储数据的。常见的该类对象包括各种数字,字符串,表,词典。在C语言中,我们称这样一些数据结构为变量。而在Python中,这些是对象。

对象是储存在内存中的实体。但我们并不能直接接触到该对象。我们在程序中写的对象名,只是指向这一对象的引用(reference)

 

引用和对象分离,是动态类型的核心。引用可以随时指向一个新的对象:

a = 3
a = 'at'

第一个语句中,3是储存在内存中的一个整数对象。通过赋值,引用a指向对象3

第二个语句中,内存中建立对象‘at’,是一个字符串(string)。引用a指向了'at'。此时,对象3不再有引用指向它。Python会自动将没有引用指向的对象销毁(destruct),释放相应内存。

(对于小的整数和短字符串,Python会缓存这些对象,而不是频繁的建立和销毁。)

 

a = 5
b = a
a = a + 2

再看这个例子。通过前两个句子,我们让a,b指向同一个整数对象5(b = a的含义是让引用b指向引用a所指的那一个对象)。但第三个句子实际上对引用a重新赋值,让a指向一个新的对象7。此时a,b分别指向不同的对象。我们看到,即使是多个引用指向同一个对象,如果一个引用值发生变化,那么实际上是让这个引用指向一个新的引用,并不影响其他的引用的指向。从效果上看,就是各个引用各自独立,互不影响。

 

其它数据对象也是如此:

L1 = [1,2,3]
L2 = L1
L1 = 1

 

但注意以下情况

L1 = [1,2,3]
L2 = L1
L1[0] = 10
print L2

在该情况下,我们不再对L1这一引用赋值,而是对L1所指向的表的元素赋值。结果是,L2也同时发生变化。

原因何在呢?因为L1,L2的指向没有发生变化,依然指向那个表。表实际上是包含了多个引用的对象(每个引用是一个元素,比如L1[0],L1[1]..., 每个引用指向一个对象,比如1,2,3), 。而L1[0] = 10这一赋值操作,并不是改变L1的指向,而是对L1[0], 也就是表对象的一部份(一个元素),进行操作,所以所有指向该对象的引用都受到影响。

(与之形成对比的是,我们之前的赋值操作都没有对对象自身发生作用,只是改变引用指向。)

 

列表可以通过引用其元素,改变对象自身(in-place change)。这种对象类型,称为可变数据对象(mutable object),词典也是这样的数据类型。

而像之前的数字和字符串,不能改变对象本身,只能改变引用的指向,称为不可变数据对象(immutable object)

我们之前学的元组(tuple),尽管可以调用引用元素,但不可以赋值,因此不能改变对象自身,所以也算是immutable object.

 

从动态类型看函数的参数传递

函数的参数传递,本质上传递的是引用。比如说:

def f(x):
    x = 100
    print x

a = 1
f(a)
print a

参数x是一个新的引用,指向a所指的对象。如果参数是不可变(immutable)的对象,a和x引用之间相互独立。对参数x的操作不会影响引用a。这样的传递类似于C语言中的值传递。

 

如果传递的是可变(mutable)的对象,那么改变函数参数,有可能改变原对象。所有指向原对象的引用都会受影响,编程的时候要对此问题留心。比如说:

def f(x):
    x[0] = 100
    print x

a = [1,2,3]
f(a)
print a

 

动态类型是Python的核心机制之一。可以在应用中慢慢熟悉。

 

总结

引用和对象的分离,对象是内存中储存数据的实体,引用指向对象。

可变对象,不可变对象

函数值传递

目录
相关文章
|
7天前
|
IDE 开发工具 开发者
Python类型注解:提升代码可读性与健壮性
Python类型注解:提升代码可读性与健壮性
166 102
|
5月前
|
索引 Python
Python的变量和简单类型
本文介绍了Python中变量命名规则、常用变量类型及字符串操作。变量命名需遵循字母、数字和下划线组合,不能以数字开头且不可与关键字冲突。字符串支持单引号、双引号或三引号定义,涵盖基本输出、转义字符、索引、拼接等操作。此外,还详细解析了字符串方法如`islower()`、`upper()`、`count()`等,帮助理解字符串处理技巧。
130 15
|
1月前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
161 3
|
1月前
|
缓存 数据可视化 Linux
Python文件/目录比较实战:排除特定类型的实用技巧
本文通过四个实战案例,详解如何使用Python比较目录差异并灵活排除特定文件,涵盖基础比较、大文件处理、跨平台适配与可视化报告生成,助力开发者高效完成目录同步与数据校验任务。
96 0
|
1月前
|
IDE API 开发工具
Python类型注解:让代码“开口说话”的隐形助手
Python类型注解为动态语言增添类型信息,提升代码可读性与健壮性。通过变量、函数参数及返回值的类型标注,配合工具如mypy、IDE智能提示,可提前发现类型错误,降低调试与协作成本。本文详解类型注解的实战技巧、生态支持及最佳实践,助你写出更高质量的Python代码。
118 0
|
4月前
|
Python
Python技术解析:了解数字类型及数据类型转换的方法。
在Python的世界里,数字并不只是简单的数学符号,他们更多的是一种生动有趣的语言,用来表达我们的思维和创意。希望你从这个小小的讲解中学到了有趣的内容,用Python的魔法揭示数字的奥秘。
121 26
|
4月前
|
人工智能 安全 IDE
Python 的类型安全是如何实现的?
本文探讨了 Python 的类型安全实现方式。从 3.5 版本起,Python 引入类型提示(Type Hints),结合静态检查工具(如 mypy)和运行时验证库(如 pydantic),增强类型安全性。类型提示仅用于开发阶段的静态分析,不影响运行时行为,支持渐进式类型化,保留动态语言灵活性。泛型机制进一步提升通用代码的类型安全性。总结而言,Python 的类型系统是动态且可选的,兼顾灵活性与安全性,符合“显式优于隐式”的设计哲学。
|
6月前
|
Rust JavaScript 前端开发
[oeasy]python075_什么是_动态类型_静态类型_强类型_弱类型_编译_运行
本文探讨了编程语言中的动态类型与静态类型、强类型与弱类型的概念。通过实例分析,如Python允许变量类型动态变化(如`age`从整型变为字符串),而C语言一旦声明变量类型则不可更改,体现了动态与静态类型的差异。此外,文章还对比了强类型(如Python,不允许隐式类型转换)和弱类型(如JavaScript,支持自动类型转换)的特点。最后总结指出,Python属于动态类型、强类型语言,对初学者友好但需注意类型混淆,并预告下期内容及提供学习资源链接。
171 21
|
6月前
|
Python Windows
[oeasy]python076_int这个词怎么来的_[词根溯源]整数类型_int_integer_touch
本文探讨了“int”一词的起源及其与整数类型的关联。通过词根溯源,揭示“int”来源于“integer”,意为“完整的数”,与零碎的分数相对。同时分析了相关词汇如“tact”(接触)、“touch”(触摸)及衍生词,如“tangential”(切线的)、“intagible”(无形的)和“integral”(完整的、不可或缺的)。文章还结合编程语言特性,解释了Python作为动态类型、强类型语言的特点,并总结了整型变量的概念与意义。最后预告了后续内容,提供了学习资源链接。
188 11
|
7月前
|
索引 Python
python字符串类型及操作
本文主要讲解字符串类型的表示、操作符、处理函数、处理方法及格式化。内容涵盖字符串的定义、表示方法(单双引号、三引号)、索引与切片、特殊字符转义、常见操作符(如+、*、in等)、处理函数(如len()、str()、chr()等)、处理方法(如.lower()、.split()等)以及格式化方式(如.format())。通过实例代码详细介绍了字符串的各种用法和技巧,帮助读者全面掌握字符串操作。
215 2
python字符串类型及操作

推荐镜像

更多