Python标准库——走马观花

简介: 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!   Python有一套很有用的标准库(standard library)。标准库会随着Python解释器,一起安装在你的电脑中的。

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

 

Python有一套很有用的标准库(standard library)。标准库会随着Python解释器,一起安装在你的电脑中的。它是Python的一个组成部分。这些标准库是Python为你准备好的利器,可以让编程事半功倍。

 

我将根据我个人的使用经验中,挑选出标准库三个方面的包(package)介绍:

  • Python增强
  • 系统互动
  • 网络

 

第一类:Python增强

Python自身的已有的一些功能可以随着标准库的使用而得到增强。

 

1) 文字处理

Python的string类提供了对字符串进行处理的方法。更进一步,通过标准库中的re包,Python可以用正则表达式(regular expression)来处理字符串。

正则表达式是一个字符串模板。Python可以从字符中搜查符合该模板的部分,或者对这一部分替换成其它内容。比如你可以搜索一个文本中所有的数字。正则表达式的关键在于根据自己的需要构成模板。

此外,Python标准库还为字符串的输出提供更加丰富的格式, 比如: string包,textwrap包。

 

2) 数据对象

不同的数据对象,适用于不同场合对数据的组织和管理。Python的标准库定义了表和词典之外的数据对象,比如说数组(array),队列(Queue)。一个熟悉数据结构(data structure)的Python用户可以在这些包中找到自己需要的数据结构。

此外,我们也会经常使用copy包,以复制对象

 

3) 日期和时间

日期和时间的管理并不复杂,但容易犯错。Python的标准库中对日期和时间的管理颇为完善(利用time包管理时间,利用datetime包管理日期和时间),你不仅可以进行日期时间的查询和变换(比如:2012年7月18日对应的是星期几),还可以对日期时间进行运算(比如2000.1.1 13:00的378小时之后是什么日期,什么时间)。通过这些标准库,还可以根据需要控制日期时间输出的文本格式(比如:输出’2012-7-18‘还是'18 Jul 2012')

 

4) 数学运算

标准库中,Python定义了一些新的数字类型(decimal包, fractions包), 以弥补之前的数字类型(integer, float)可能的不足。标准库还包含了random包,用于处理随机数相关的功能(产生随机数,随机取样等)。math包补充了一些重要的数学常数和数学函数,比如pi,三角函数等等。

(尽管numpy并不是标准库中的包,但它的数组运算的良好支持,让它在基于Python的科研和计算方面得到相当广泛的应用,可以适当关注。)

 

5) 存储

之前我们的快速教程中,只提及了文本的输入和输出。实际上,Python可以输入或输出任意的对象。这些对象可以通过标准库中的pickle包转换成为二进制格式(binary),然后存储于文件之中,也可以反向从二进制文件中读取对象。

此外,标准库中还支持基本的数据库功能(sqlite3包)。XML和csv格式的文件也有相应的处理包。

  

第二类:系统互动

系统互动,主要指Python和操作系统(operate system)、文件系统(file system)的互动。Python可以实现一个操作系统的许多功能。它能够像bash脚本那样管理操作系统,这也是Python有时被成为脚本语言的原因。

 

1) Python运行控制

sys包被用于管理Python自身的运行环境。Python是一个解释器(interpreter), 也是一个运行在操作系统上的程序。我们可以用sys包来控制这一程序运行的许多参数,比如说Python运行所能占据的内存和CPU, Python所要扫描的路径等。另一个重要功能是和Python自己的命令行互动,从命令行读取命令和参数。

 

2) 操作系统

如果说Python构成了一个小的世界,那么操作系统就是包围这个小世界的大世界。Python与操作系统的互动可以让Python在自己的小世界里管理整个大世界。

os包是Python与操作系统的接口。我们可以用os包来实现操作系统的许多功能,比如管理系统进程,改变当前路径(相当于’cd‘),改变文件权限等,建立。但要注意,os包是建立在操作系统的平台上的,许多功能在Windows系统上是无法实现的。另外,在使用os包中,要注意其中的有些功能已经被其他的包取代。

我们通过文件系统来管理磁盘上储存的文件。查找、删除,复制文件,以及列出文件列表等都是常见的文件操作。这些功能经常可以在操作系统中看到(比如ls, mv, cp等Linux命令),但现在可以通过Python标准库中的glob包、shutil包、os.path包、以及os包的一些函数等,在Python内部实现。

subprocess包被用于执行外部命令,其功能相当于我们在操作系统的命令行中输入命令以执行,比如常见的系统命令'ls'或者'cd',还可以是任意可以在命令行中执行的程序。

 

4) 线程与进程

Python支持多线程(threading包)运行和多进程(multiprocessing包)运行。通过多线程和多进程,可以提高系统资源的利用率,提高计算机的处理速度。Python在这些包中,附带有相关的通信和内存管理工具。此外,Python还支持类似于UNIX的signal系统,以实现进程之间的粗糙的信号通信。

 

第三类:网络

现在,网络功能的强弱很大程度上决定了一个语言的成功与否。从Ruby, JavaScript, php身上都可以感受到这一点。Python的标准库对互联网开发的支持并不充分,这也是Django等基于Python的项目的出发点: 增强Python在网络方面的应用功能。这些项目取得了很大的成功,也是许多人愿意来学习Python的一大原因。但应注意到,这些基于Python的项目也是建立在Python标准库的基础上的。

 

1) 基于socket层的网络应用

socket是网络可编程部分的底层。通过socket包,我们可以直接管理socket,比如说将socket赋予给某个端口(port),连接远程端口,以及通过连接传输数据。我们也可以利用SocketServer包更方便地建立服务器。

通过与多线程和多进程配合,建立多线程或者多进程的服务器,可以有效提高服务器的工作能力。此外,通过asyncore包实现异步处理,也是改善服务器性能的一个方案。

 

2) 互联网应用

在实际应用中,网络的很多底层细节(比如socket)都是被高层的协议隐藏起来的。建立在socket之上的http协议实际上更容易也更经常被使用。http通过request/responce的模式建立连接并进行通信,其信息内容也更容易理解。Python标准库中有http的服务器端和客户端的应用支持(BaseHTTPServer包; urllib包, urllib2包), 并且可以通过urlparse包对URL(URL实际上说明了网络资源所在的位置)进行理解和操作。

 

以上的介绍比较粗糙,只希望能为大家提供一个了解标准库的入口。欢迎大家一起分享标准库的使用经验。

 

 

 

目录
相关文章
|
1月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
322 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
1月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
120 0
|
6月前
|
JavaScript 前端开发 Java
通义灵码 Rules 库合集来了,覆盖Java、TypeScript、Python、Go、JavaScript 等
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
1246 103
|
3月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
18天前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
110 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
26天前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
221 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
2月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
161 18
|
3月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
349 51
|
2月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
245 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
2月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
294 0

推荐镜像

更多