纸上谈兵: 数学归纳法, 递归, 栈

简介: 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!    数学归纳法 数学归纳法(mathematical induction)是一种数学证明方法,常用于证明命题(命题是对某个现象的描述)在自然数范围内成立。

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢! 

 

数学归纳法

数学归纳法(mathematical induction)是一种数学证明方法,常用于证明命题(命题是对某个现象的描述)在自然数范围内成立。随着现代数学的发展,自然数范围内的证明实际上构成了许多其他领域(比如数学分析)的基础,所以数学归纳法对于整个数学体系至关重要。

 

数学归纳法本身非常简单。如果我们想要证明某个命题对于自然数n都成立,那么:

第一步 证明命题对于n = 1成立。

第二步 假设命题对于n成立,n为任意自然数,证明在此假设下,命题对于n+1成立。

命题得证

 

想一下上面的两个步骤。它们实际上意味着,命题对于n = 1成立 -> 命题对于n = 2成立 -> 命题对于n = 3成立……直到无穷。因此,命题对于任意自然数都成立。这就好像多米诺骨牌,我们确定n的倒下会导致n + 1的倒下,然后推倒第一块骨牌,就能保证任意骨牌的倒下。

 

我们来看一下使用数学归纳法来证明高斯求和公式:

n为任意自然数。

(这个公式据说是高斯小学时想出来的。老师惩罚全班同学,必须算出1到100的累加,才能回家。于是高斯想出了上面的方法。天才都是被逼出来的么?)

 

我们的命题是: 高斯求和公式对于任意自然数n都成立。

下面为数学归纳法的证明步骤:

第一步 n = 1,等式左边(1的累加)为1,右边(右边公式代入n=1)也为1,等式两边相等,等式成立,因此命题对于 n = 1 成立。

第二步 假设上述公式对于任意n成立, 即1到n的累加为n*(n+1)/2

    那么,对于n+1,等式的左边(从1到n+1的累加)等于n*(n+1)/2 + (n+1),即(n+1)*(n+2)/2

                  等式的右边的n用n+1代替,成为(n+1)*(n+2)/2

    等式两边相等,等式成立。因此,当假设命题对于n成立时,命题对于n+1成立。

因此,命题得证。

 

递归

递归(recursion)是计算机中的重要概念,它是指一个计算机程序调用其自身。为了保证计算机不陷入死循环,递归要求程序有一个能够达到的终止条件(base case)。比如下面的程序,是用于计算高斯求和公式:

/*
 * Gauss summation
 */

int f(n)
{
    if (n == 1) { 
        return 1;  // base case
    }
    else {
        return f(n-1) + n;  // induction
    }
}

在程序中规定了f(1)的值,以及f(n)和f(n-1)的关系。这正是数学归纳法思想的体现。想要得到f(n),必须计算f(n-1);想要f(n-1),必须计算f(n-2)……直到f(1)。由于我们已经知道了f(1)的值,我们就可以填补前面所有的空缺,最终返回f(n)的值。

递归是数学归纳法在计算机中的程序实现。使用递归设计程序的时候,我们设置base case,并假设我们会获得n-1的结果,并实现n的结果。这就好像数学归纳法,我们只关注初始和衔接,而不需要关注具体的每一步。

 

递归是用栈(stack)数据结构实现的。正如我们上面所说的,计算f(n),需要f(n-1);计算f(n-1),需要f(n-2)……。我们在寻找到f(1)之前,会有许多空缺: f(n-1)的值什么? f(n-2)的值是什么? …… f(2)的值是什么?f(1)的值是什么? 我们的第一个问题是f(n)是什么,结果,这个问题引出下一个问题,再下一个问题…… 每个问题的解答都依赖于下一个问题,直到我们找到第一个可以回答的问题: f(1)的值是什么?

我们用栈来保存我们在探索过程中的疑问。C语言中,函数的调用已经是用栈记录离场情境和返回地址。递归是函数对自身的调用,所以很自然的,递归用栈来保存我们的“疑问” 。

我们假设栈向下增长。首先,我们调用f(100),那么当执行到

return f(n-1) + n; 

f(100)暂停执行,并记录当前的状态,比如n的值,当前执行到的位置。随后调用f(99),栈增加一个frame,直到调用f(98) ... 栈不断增长,直到f(1)。f(1)得到结果1,并返回给f(2)。f(1)栈frame删除,转移到f(2)frame情境中继续执行

return f(n-1) + n; 

然后返回给f(3) ... 直到f(99)返回给f(100),并执行

return f(n-1) + n; 

返回f(100)的值,得到结果。

 

上述过程是C编译器自动完成的。在实现递归算法时,也可以自行手动实现栈。这样可以得到更好的运行效率。

 

总结

数学归纳法

递归

 

欢迎继续阅读“纸上谈兵: 算法与数据结构”系列。

 

目录
相关文章
|
9天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
13天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
17天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
1月前
|
负载均衡 网络协议 安全
DKDP用户态协议栈-kni
DKDP用户态协议栈-kni
|
1月前
|
存储 安全 编译器
缓冲区溢出之栈溢出(Stack Overflow
【8月更文挑战第18天】
55 3
|
1月前
|
测试技术
【初阶数据结构篇】栈的实现(附源码)
在每一个方法的第一排都使用assert宏来判断ps是否为空(避免使用时传入空指针,后续解引用都会报错)。
|
19天前
crash —— 获取内核地址布局、页大小、以及栈布局
crash —— 获取内核地址布局、页大小、以及栈布局
|
19天前
|
存储 程序员 C语言
堆和栈之间有什么区别
【9月更文挑战第1天】堆和栈之间有什么区别
89 0
|
28天前
|
机器学习/深度学习 消息中间件 缓存
栈与队列的实现
栈与队列的实现
37 0