纸上谈兵: 左倾堆 (leftist heap)

简介: 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!   我们之前讲解了堆(heap)的概念。堆是一个优先队列。每次从堆中取出的元素都是堆中优先级最高的元素。

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

 

我们之前讲解了堆(heap)的概念。堆是一个优先队列。每次从堆中取出的元素都是堆中优先级最高的元素

在之前的文章中,我们基于完全二叉树(complete binary tree)实现了堆,这样的堆叫做二叉堆(binary heap)。binary heap有一个基本要求: 每个节点的优先级大于两个子节点的优先级。在这一要求下,堆的根节点始终是堆的元素中优先级最高的元素。此外,我们实现了delete_min()操作,从堆中取出元素;insert()操作,向堆中插入元素。

现在,我们考虑下面的问题: 如何合并(merge)两个堆呢? 一个方案是从第一个堆中不断取出一个元素,并插入到第二个堆中。这样,我们需要量级为n的操作。我们下面要实现更有效率的合并。

 

左倾堆 (Leftist Heap)

左倾堆基于二叉树(binary tree)。左倾堆的节点满足堆的基本要求,即(要求1)每个节点的优先级大于子节点的优先级。与二叉堆不同,左倾堆并不是完全二叉树。二叉堆是非常平衡的树结构,它的每一层都被填满(除了最下面一层)。左倾堆则是维持一种不平衡的结构: 它的左子树节点往往比右子树有更多的节点。

不平衡

 

左倾堆的每个节点有一个附加信息,即null path length (npl)。npl是从一个节点到一个最近的不满节点的路径长度(不满节点:两个子节点至少有一个为NULL)。一个叶节点的npl为0,一个NULL节点的npl为-1。

各个节点的npl (这里显示的不是元素值)

根据npl的定义,我们有推论1: 一个节点的npl等于子节点npl中最小值加1: npl(node) = min(npl(lchild), npl(rchild)) + 1

 

有了npl的概念,我们可以完整的定义左倾堆。左倾堆是一个符合下面要求的二叉树:

  • 要求1: 每个节点的优先级大于子节点的优先级
  • 要求2: 对于任意节点的左右两个子节点,右子节点的npl不大于左子节点的npl

 

左倾堆的性质

从上面的要求1和2可以知道,左倾堆的任意子树也是一个左倾堆

由于左倾堆的特征,左倾堆的右侧路径(right path)较短。右侧路径是指我们从根节点开始,不断前往右子节点所构成的路径。对于一个左倾堆来说,右侧路径上节点数不大于任意其他路径上的节点数,否则,将违反左倾堆的要求2

我们还可以证明推论2,如果一个左倾堆的右侧路径上有r个节点,那么该左倾堆将至少有2r-1个节点。我们采用归纳法证明:

  • r = 1, 右侧路径上有一个节点,所以至少有21-1个节点
  • 假设任意r, 左倾堆至少有2r-1节点。那么对于一个右侧路径节点数为r+1的左倾堆来说,根节点的右子树的右侧路径有r个节点。根节点的左子树的右侧路径至少有r个节点。根据假设,该左倾堆将包括: 
    • 右子树:至少有2r-1个节点
    • 左子树: 至少有2r-1个节点
    • 1个根节点
  • 因此,对于r+1,整个左倾堆至少有2r+1-1个节点。证明完成

 

换句话说,一个n节点的的左倾堆,它的右侧路径最多有log(n+1)个节点。如果对右侧路径进行操作,其复杂度将是log(n)量级。

我们将沿着右侧路径进行左倾堆的合并操作。合并采用递归。合并如下:

  1. (base case) 如果一个空左倾堆与一个非空左倾堆合并,返回非空左倾堆
  2. 如果两个左倾堆都非空,那么比较两个根节点。取较小的根节点为新的根节点(满足要求1),合并较小根节点堆的右子堆与较大根节点堆。
  3. 如果右子堆npl > 左子堆npl,互换右子堆与左子堆。
  4. 更新根节点的npl = 右子堆npl + 1

上面的合并算法调用了合并操作自身,所以是递归。由于我们沿着右侧路径递归,所以复杂度是log(n)量级。

 

左倾堆的实现

上面可以看到,左倾堆可以相对高效的实现合并(merge)操作。

其他的堆操作,比如insert, delete_min都可以在merge基础上实现:

  • 插入(insert): 将一个单节点左倾堆(新增节点)与一个已有左倾堆合并
  • 删除(delete_min): 删除根节点,将剩余的左右子堆合并

 

/* By Vamei */

/* 
 * leftist heap
 * bassed on binary tree 
 */

#include <stdio.h>
#include <stdlib.h>

typedef struct node *position;
typedef int ElementTP;

struct node {
    ElementTP element;
    int npl;
    position lchild;
    position rchild;
};

typedef struct node *LHEAP;

LHEAP insert(ElementTP, LHEAP);
ElementTP find_min(LHEAP);
LHEAP delete_min(LHEAP);
LHEAP merge(LHEAP, LHEAP);
static LHEAP merge1(LHEAP, LHEAP);
static LHEAP swap_children(LHEAP);

int main(void)
{
    LHEAP h1=NULL;
    LHEAP h2=NULL;
    h1 = insert(7, h1);
    h1 = insert(3, h1);
    h1 = insert(5, h1);

    h2 = insert(2, h2);
    h2 = insert(4, h2);
    h2 = insert(8, h2);

    h1 = merge(h1, h2);
    printf("minimum: %d\n", find_min(h1));
    return 0;
}

/*
 * insert:
 * merge a single-node leftist heap with a leftist heap
 * */
LHEAP insert(ElementTP value, LHEAP h)
{
    LHEAP single;
    single = (position) malloc(sizeof(struct node));

    // initialze
    single->element  = value;
    single->lchild   = NULL;
    single->rchild   = NULL;

    return  merge(single, h);
}

/*
 * find_min:
 * return root value in the tree
 * */
ElementTP find_min(LHEAP h)
{
    if(h != NULL) return h->element;
    else exit(1);
}

/*
 * delete_min:
 * remove root, then merge two subheaps
 * */
LHEAP delete_min(LHEAP h)
{
    LHEAP l,r;
    l = h->lchild;
    r = h->rchild;
    free(h);
    return merge(l, r);
}

/*
 * merge two leftist heaps
 * */
LHEAP merge(LHEAP h1, LHEAP h2) 
{

    // if one heap is null, return the other
    if(h1 == NULL) return h2;
    if(h2 == NULL) return h1;

    // if both are not null
    if (h1->element < h2->element) { 
        return merge1(h1, h2);
    }
    else {
        return merge1(h2, h1);
    }
}

// h1->element < h2->element
static LHEAP merge1(LHEAP h1, LHEAP h2)
{
    if (h1->lchild == NULL) { 
        /* h1 is a single node, npl is 0 */
        h1->lchild = h2; 
    /* rchild is NULL, npl of h1 is still 0 */
    }
    else {
        // left is not NULL
    // merge h2 to right
    // swap if necessary
        h1->rchild = merge(h1->rchild, h2);
    if(h1->lchild->npl < h1->rchild->npl) {
        swap_children(h1);
    }
        h1->npl = h1->rchild->npl + 1; // update npl
    }
    return h1;
}

// swap: keep leftist property
static LHEAP swap_children(LHEAP h) 
{
    LHEAP tmp;
    tmp       = h->lchild;
    h->lchild = h->rchild;
    h->rchild = tmp;
}

 

总结

左倾堆利用不平衡的节点分布,让右侧路径保持比较短的状态,从而提高合并的效率。

在合并过程,通过左右互换,来恢复左倾堆的性质。

 

欢迎继续阅读“纸上谈兵: 算法与数据结构”系列。

 

目录
相关文章
|
6月前
|
存储 算法
【堆】数据结构堆的实现(万字详解)
【堆】数据结构堆的实现(万字详解)
169 0
|
2月前
|
前端开发 算法 JavaScript
最小堆最大堆了解吗?一文了解堆在前端中的应用
该文章详细解释了堆数据结构(特别是最小堆)的概念与性质,并提供了使用JavaScript实现最小堆的具体代码示例,包括堆的插入、删除等操作方法。
最小堆最大堆了解吗?一文了解堆在前端中的应用
|
4月前
|
监控 算法 Java
JVM调优---堆溢出,栈溢出的出现场景以及解决方案
【7月更文挑战第3天】堆溢出(Heap Overflow)和栈溢出(Stack Overflow)是两种常见的内存溢出问题,通常发生在内存管理不当或设计不合理的情况下
62 3
|
5月前
|
存储 Java 编译器
技术经验解读:【堆栈溢出】堆栈溢出
技术经验解读:【堆栈溢出】堆栈溢出
|
6月前
|
算法 C++
c++算法学习笔记 (19) 堆
c++算法学习笔记 (19) 堆
|
存储 C语言
[数据结构 -- C语言] 堆(Heap),你小子就是堆,看我如何透彻的将你拿捏
[数据结构 -- C语言] 堆(Heap),你小子就是堆,看我如何透彻的将你拿捏
[数据结构 -- C语言] 堆(Heap),你小子就是堆,看我如何透彻的将你拿捏
|
存储 算法 安全
|
算法
每天一点算法-堆(Day9)
每天一点算法-堆(Day9)
58 0
堆算法的实现
堆算法的实现
|
Java
JVM调优-方法区,堆,栈调优详解
JVM调优-方法区,堆,栈调优详解
151 0
JVM调优-方法区,堆,栈调优详解