Oracle分页查询语句(一)

简介: Oracle的分页查询语句基本上可以按照本文给出的格式来进行套用。   分页查询格式: SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM TABLE_NAME) A WHERE ROWNUM = 21 其中最内层的查询SELECT * FROM TABLE_NAME表示不进行翻页的原始查询语句。

Oracle的分页查询语句基本上可以按照本文给出的格式来进行套用。

 


分页查询格式:

SELECT * FROM
(
SELECT A.*, ROWNUM RN
FROM (SELECT * FROM TABLE_NAME) A
WHERE ROWNUM <= 40
)
WHERE RN >= 21

其中最内层的查询SELECT * FROM TABLE_NAME表示不进行翻页的原始查询语句。ROWNUM <= 40和RN >= 21控制分页查询的每页的范围。

上面给出的这个分页查询语句,在大多数情况拥有较高的效率。分页的目的就是控制输出结果集大小,将结果尽快的返回。在上面的分页查询语句中,这种考虑主要体现在WHERE ROWNUM <= 40这句上。

选择第21到40条记录存在两种方法,一种是上面例子中展示的在查询的第二层通过ROWNUM <= 40来控制最大值,在查询的最外层控制最小值。而另一种方式是去掉查询第二层的WHERE ROWNUM <= 40语句,在查询的最外层控制分页的最小值和最大值。这是,查询语句如下:

SELECT * FROM
(
SELECT A.*, ROWNUM RN
FROM (SELECT * FROM TABLE_NAME) A
)
WHERE RN BETWEEN 21 AND 40

对比这两种写法,绝大多数的情况下,第一个查询的效率比第二个高得多。

这是由于CBO优化模式下,Oracle可以将外层的查询条件推到内层查询中,以提高内层查询的执行效率。对于第一个查询语句,第二层的查询条件WHERE ROWNUM <= 40就可以被Oracle推入到内层查询中,这样Oracle查询的结果一旦超过了ROWNUM限制条件,就终止查询将结果返回了。

而第二个查询语句,由于查询条件BETWEEN 21 AND 40是存在于查询的第三层,而Oracle无法将第三层的查询条件推到最内层(即使推到最内层也没有意义,因为最内层查询不知道RN代表什么)。因此,对于第二个查询语句,Oracle最内层返回给中间层的是所有满足条件的数据,而中间层返回给最外层的也是所有数据。数据的过滤在最外层完成,显然这个效率要比第一个查询低得多。

上面分析的查询不仅仅是针对单表的简单查询,对于最内层查询是复杂的多表联合查询或最内层查询包含排序的情况一样有效。

这里就不对包含排序的查询进行说明了,下一篇文章会通过例子来详细说明。下面简单讨论一下多表联合的情况。对于最常见的等值表连接查询,CBO一般可能会采用两种连接方式NESTED LOOP和HASH JOIN(MERGE JOIN效率比HASH JOIN效率低,一般CBO不会考虑)。在这里,由于使用了分页,因此指定了一个返回的最大记录数,NESTED LOOP在返回记录数超过最大值时可以马上停止并将结果返回给中间层,而HASH JOIN必须处理完所有结果集(MERGE JOIN也是)。那么在大部分的情况下,对于分页查询选择NESTED LOOP作为查询的连接方法具有较高的效率(分页查询的时候绝大部分的情况是查询前几页的数据,越靠后面的页数访问几率越小)。

因此,如果不介意在系统中使用HINT的话,可以将分页的查询语句改写为:

SELECT /*+ FIRST_ROWS */ * FROM
(
SELECT A.*, ROWNUM RN
FROM (SELECT * FROM TABLE_NAME) A
WHERE ROWNUM <= 40
)
WHERE RN >= 21

目录
相关文章
|
4天前
|
存储 人工智能 安全
AI 越智能,数据越危险?
阿里云提供AI全栈安全能力,为客户构建全链路数据保护体系,让企业敢用、能用、放心用
|
7天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
6天前
|
数据采集 人工智能 自然语言处理
3分钟采集134篇AI文章!深度解析如何通过云无影AgentBay实现25倍并发 + LlamaIndex智能推荐
结合阿里云无影 AgentBay 云端并发采集与 LlamaIndex 智能分析,3分钟高效抓取134篇 AI Agent 文章,实现 AI 推荐、智能问答与知识沉淀,打造从数据获取到价值提炼的完整闭环。
407 93
|
6天前
|
SQL 人工智能 自然语言处理
Geo优化SOP标准化:于磊老师的“人性化Geo”体系如何助力企业获客提效46%
随着生成式AI的普及,Geo优化(Generative Engine Optimization)已成为企业获客的新战场。然而,缺乏标准化流程(Geo优化sop)导致优化效果参差不齐。本文将深入探讨Geo专家于磊老师提出的“人性化Geo”优化体系,并展示Geo优化sop标准化如何帮助企业实现获客效率提升46%的惊人效果,为企业在AI时代构建稳定的流量护城河。
401 156
Geo优化SOP标准化:于磊老师的“人性化Geo”体系如何助力企业获客提效46%
|
6天前
|
数据采集 缓存 数据可视化
Android 无侵入式数据采集:从手动埋点到字节码插桩的演进之路
本文深入探讨Android无侵入式埋点技术,通过AOP与字节码插桩(如ASM)实现数据采集自动化,彻底解耦业务代码与埋点逻辑。涵盖页面浏览、点击事件自动追踪及注解驱动的半自动化方案,提升数据质量与研发效率,助力团队迈向高效、稳定的智能化埋点体系。(238字)
294 158
|
14天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。