如何编写更好的SQL查询:终极指南-第二部分

简介: 上一篇文章中,我们学习了 SQL 查询是如何执行的以及在编写 SQL 查询语句时需要注意的地方。 下面,我进一步学习查询方法以及查询优化。   基于集合和程序的方法进行查询 反向模型中隐含的事实是,建立查询时基于集合和程序的方法之间存在着不同。

上一篇文章中,我们学习了 SQL 查询是如何执行的以及在编写 SQL 查询语句时需要注意的地方。

下面,我进一步学习查询方法以及查询优化。

 

基于集合和程序的方法进行查询

反向模型中隐含的事实是,建立查询时基于集合和程序的方法之间存在着不同。

  • 查询的程序方法是一种非常类似于编程的方法:你告诉系统需要做些什么以及如何做。例如上一篇文章中的示例,通过执行一个函数然后调用另一个函数来查询数据库,或者使用包含循环、条件和用户定义函数(UDF)的逻辑方式来获得最终查询结果。你会发现通过这种方式,一直在请求一层一层中数据的子集。这种方法也经常被称为逐步或逐行查询。
  • 另一种是基于集合的方法,只需指定需要执行的操作。使用这种方法要做的事情就是,指定你想通过查询获得的结果的条件和要求。在检索数据过程中,你不需要关注实现查询的内部机制:数据库引擎会决定最佳的执行查询的算法和逻辑。

由于 SQL 是基于集合的,所以这种方法比起程序方法更加有效,这也解释了为什么在某些情况下,SQL 可以比代码工作地更快。

基于集合的查询方法也是数据挖掘分析行业要求你必须掌握的技能!因为你需要熟练的在这两种方法之间进行切换。如果你发现自己的查询中存在程序查询,则应该考虑是否需要重写这部分。

 

从查询到执行计划 

反向模式不是静止不变的。在你成为 SQL 开发者的过程中,避免查询反向模型和重写查询可能会是一个很艰难的任务。所以时常需要使用工具以一种更加结构化的方法来优化你的查询。

对性能的思考不仅需要更结构化的方法,还需要更深入的方法。

然而,这种结构化和深入的方法主要是基于查询计划的。查询计划首先被解析为“解析树”并且准确定义了每个操作使用什么算法以及如何协调操作过程。

 

查询优化

在优化查询时,很可能需要手动检查优化器生成的计划。在这种情况下,将需要通过查看查询计划来再次分析你的查询。

要掌握这样的查询计划,你需要使用一些数据库管理系统提供给你的工具。你可以使用以下的一些工具:

  • 一些软件包功能工具可以生成查询计划的图形表示。
  • 其它工具能够为你提供查询计划的文本描述。

请注意,如果你正在使用 PostgreSQL,则可以区分不同的 EXPLAIN,你只需获取描述,说明 planner 如何在不运行计划的情况下执行查询。同时 EXPLAIN ANALYZE 会执行查询,并返回给你一个评估查询计划与实际查询计划的分析报告。一般来说,实际执行计划会切实的执行这个计划,而评估执行计划可以在不执行查询的情况下,解决这个问题。在逻辑上,实际执行计划更为有用,因为它包含了执行查询时,实际发生的其它细节和统计信息。

接下来你将了解 XPLAIN 和 ANALYZE 的更多信息,以及如何使用这两个命令来进一步了解你的查询计划和查询性能。要做到这一点,你需要开始使用两个表: one_million 和 half_million 来做一些示例。

你可以借助 EXPLAIN 来检索 one_million 表的当前信息:确保已将其放在运行查询的首要位置,在运行完成之后,会返回到查询计划中:

EXPLAIN
SELECT *
FROM one_million;
QUERY PLAN
_________________________________________________
Seq Scan on one_million
(cost=0.00..18584.82 rows=1025082 width=36)
(1 row)

在以上示例中,我们看到查询的 Cost 是0.00..18584.82 ,行数是1025082,列宽是36。

同时,也可以借助 ANALYZE 来更新统计信息  。

ANALYZE one_million;
EXPLAIN
SELECT *
FROM one_million;
QUERY PLAN
_________________________________________________ Seq Scan on one_million (cost=0.00..18334.00 rows=1000000 width=37) (1 row)

除了 EXPLAIN 和 ANALYZE,你也可以借助 EXPLAIN ANALYZE 来检索实际执行时间:

EXPLAIN ANALYZE
SELECT *
FROM one_million;
QUERY PLAN
___________________________________________________
Seq Scan on one_million
(cost=0.00..18334.00 rows=1000000 width=37)
(actual time=0.015..1207.019 rows=1000000 loops=1)
Total runtime: 2320.146 ms
(2 rows)

使用 EXPLAIN ANALYZE 的缺点就是需要实际执行查询,这点值得注意!

到目前为止,我们看到的所有算法是顺序扫描或全表扫描:这是一种在数据库上进行扫描的方法,扫描的表的每一行都是以顺序(串行)的顺序进行读取,每一列都会检查是否符合条件。在性能方面,顺序扫描不是最佳的执行计划,因为需要扫描整个表。但是如果使用慢磁盘,顺序读取也会很快。

还有一些其它算法的示例:

EXPLAIN ANALYZE
SELECT *
FROM one_million JOIN half_million
ON (one_million.counter=half_million.counter);
QUERY PLAN
_____________________________________________________________
Hash Join (cost=15417.00..68831.00 rows=500000 width=42)
(actual time=1241.471..5912.553 rows=500000 loops=1)
Hash Cond: (one_million.counter = half_million.counter)
    -> Seq Scan on one_million
    (cost=0.00..18334.00 rows=1000000 width=37)
    (actual time=0.007..1254.027 rows=1000000 loops=1)
    -> Hash (cost=7213.00..7213.00 rows=500000 width=5)
    (actual time=1241.251..1241.251 rows=500000 loops=1)
    Buckets: 4096 Batches: 16 Memory Usage: 770kB
    -> Seq Scan on half_million
    (cost=0.00..7213.00 rows=500000 width=5)
(actual time=0.008..601.128 rows=500000 loops=1)
Total runtime: 6468.337 ms

我们可以看到查询优化器选择了 Hash Join。请记住这个操作,因为我们需要使用这个来评估查询的时间复杂度。我们注意到了上面示例中没有 half_million.counter 索引,我们可以在下面示例中添加索引  :

CREATE INDEX ON half_million(counter);
EXPLAIN ANALYZE
SELECT *
FROM one_million JOIN half_million
ON (one_million.counter=half_million.counter);
QUERY PLAN
______________________________________________________________
Merge Join (cost=4.12..37650.65 rows=500000 width=42)
(actual time=0.033..3272.940 rows=500000 loops=1)
Merge Cond: (one_million.counter = half_million.counter)
    -> Index Scan using one_million_counter_idx on one_million
    (cost=0.00..32129.34 rows=1000000 width=37)
    (actual time=0.011..694.466 rows=500001 loops=1)
    -> Index Scan using half_million_counter_idx on half_million
    (cost=0.00..14120.29 rows=500000 width=5)
(actual time=0.010..683.674 rows=500000 loops=1)
Total runtime: 3833.310 ms
(5 rows)

通过创建索引,查询优化器已经决定了索引扫描时,如何查找 Merge join。

请注意,索引扫描和全表扫描(顺序扫描)之间的区别:后者(也称为“表扫描”)是通过扫描所有数据或索引所有页面来查找到适合的结果,而前者只扫描表中的每一行。

 

教程的第二部分内容,就介绍到这里。后续还会有《如何编写更好的SQL查询》系列的最后一篇文章,敬请期待。

原文链接:http://www.kdnuggets.com/2017/08/write-better-sql-queries-definitive-guide-part-2.html

转载请注明出自:葡萄城控件

 

相关阅读:

【报表福利大放送】100余套报表模板免费下载

如何编写更好的SQL查询:终极指南-第一部分

一句SQL完成动态分级查询

迁移 SQL Server 数据库到 Azure SQL 实战

 

相关文章
|
11天前
|
SQL 资源调度 数据库
深入探究SQL查询语句执行过程
深入探究SQL查询语句执行过程
27 2
|
11天前
|
SQL Java
使用java在未知表字段情况下通过sql查询信息
使用java在未知表字段情况下通过sql查询信息
21 1
|
1月前
|
SQL 存储 缓存
高基数 GroupBy 在 SLS SQL 中的查询加速
本文详细介绍了SLS中的高基数GroupBy查询加速技术。
|
20小时前
|
SQL 存储 缓存
一条 SQL 查询语句是如何运行?
本文详细剖析了SQL语句在MySQL中的执行流程,涵盖客户端、Server层及存储引擎层。Server层包括连接器、查询缓存、分析器、优化器与执行器等核心组件。连接器管理连接与权限校验,查询缓存加速查询,分析器负责词法与语法分析,优化器提升SQL性能,执行器调用存储引擎接口。了解这些流程有助于深入理解MySQL内部机制及其优化原理。
10 0
|
1月前
|
SQL 运维 程序员
一个功能丰富的SQL审核查询平台
一个功能丰富的SQL审核查询平台
|
15天前
|
SQL
SQL: 巧妙使用CASE WHEN实现查询
文章演示了如何利用SQL中的CASE WHEN语句来有效地进行条件性聚合查询,通过具体示例展示了CASE WHEN在统计分析中的应用技巧。
36 0
|
2月前
|
SQL 数据库 Java
HQL vs SQL:谁将统治数据库查询的未来?揭秘Hibernate的神秘力量!
【8月更文挑战第31天】Hibernate查询语言(HQL)是一种面向对象的查询语言,它模仿了SQL的语法,但操作对象为持久化类及其属性,而非数据库表和列。HQL具有类型安全、易于维护等优点,支持面向对象的高级特性,内置大量函数,可灵活处理查询结果。下面通过示例对比HQL与SQL,展示HQL在实际应用中的优势。例如,HQL查询“从员工表中筛选年龄大于30岁的员工”只需简单地表示为 `FROM Employee e WHERE e.age > 30`,而在SQL中则需明确指定表名和列名。此外,HQL在处理关联查询时也更为直观易懂。然而,对于某些复杂的数据库操作,SQL仍有其独特优势。
41 0
|
SQL 存储 关系型数据库
由 SQL 编写导致的慢
针对SQL编写导致的慢 SQL,优化起来还是相对比较方便的。正确的使用索引能加快查询速度,那么我们在编写 SQL 时就需要注意与索引相关的规则: 字段类型转换导致不用索引,如字符串类型的不用引号,数字类型的用引号等,这有可能会用不到索引导致全表扫描; mysql 不支持函数转换,所以字段前面不能加.
|
13天前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
3月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
71 13