二叉树遍历非递归算法

简介: 递归算法非常的简单。先访问跟节点,然后访问左节点,再访问右节点。如果不用递归,那该怎么做呢?仔细 一.先序遍历   看一下递归程序,就会发现,其实每次都是走树的左分支(left),直到左子树为空,然后开始从递归的最深处返回,然后开始恢复递归现场,访问右子树。

递归算法非常的简单。先访问跟节点,然后访问左节点,再访问右节点。如果不用递归,那该怎么做呢?仔细

一.先序遍历

  看一下递归程序,就会发现,其实每次都是走树的左分支(left),直到左子树为空,然后开始从递归的最深处返回,然后开始恢复递归现场,访问右子树。

由于一直走到最左边后,需要逐步返回到父节点访问右节点,因此必须有一个措施能够对节点序列回溯。

  可以用栈记忆:在访问途中将依次遇到的节点保存下来。由于节点出现次序与恢复次序是反序的,因此是一个先

进后出结构,需要用栈;还可以节点增加指向父节点的指针。 

void preOrder1(TNode* root) 
{ 
    Stack S; 
    while ((root != NULL) || !S.empty()) 
    { 
        if (root != NULL) 
        { 
            Visit(root); 
            S.push(root);       // 先序就体现在这里了,先访问,再入栈 
            root = root->left;  // 依次访问左子树 
        } 
        else 
        { 
            root = S.pop();     // 回溯至父亲节点 
            root = root->right; 
        } 
    } 
}

  

void preOrder2(TNode* root) 
{ 
    if ( root != NULL) 
    { 
        Stack S; 
        S.push(root); 
        while (!S.empty()) 
        { 
            TNode* node = S.pop();  

            Visit(node);          // 先访问根节点,然后根节点就无需入栈了 
            S.push(node->right);  // 先push的是右节点,再是左节点 
            S.push(node->left); 
        } 
    } 
}

  

二.中序遍历

  

void InOrder1(TNode* root) 
{ 
    Stack S; 
    while ( root != NULL || !S.empty() ) 
    { 
        while( root != NULL )   // 左子树入栈 
        { 
            S.push(root); 
            root = root->left; 
        } 
        if ( !S.empty() ) 
        { 
            root = S.pop(); 
            Visit(root->data);   // 访问根结点 
            root = root->right;  // 通过下一次循环实现右子树遍历 
        } 
    } 
}

  

 

三.后序遍历

  不写了……

四.层次遍历

  

// 层序遍历伪代码:非递归版本,用队列完成 
void LevelOrder(TNode *root) 
{ 
    Queue Q; 
    Q.push(root); 

    while (!Q.empty()) 
    { 
        node = Q.front();        // 取出队首值并访问 
        Visit(node); 

        if (NULL != node->left)  // 左孩子入队 
        {           
            Q.push(node->left);     
        } 
        if (NULL != node->right) // 右孩子入队 
        { 
            Q.push(node->right); 
        } 
    } 
}

  

参考文献:http://blog.csdn.net/kofsky/article/details/2886453

 

  

目录
相关文章
|
7月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
195 10
 算法系列之数据结构-二叉树
|
8月前
|
存储 算法 Java
算法系列之递归反转单链表
递归反转链表的基本思路是将当前节点的next指针指向前一个节点,然后递归地对下一个节点进行同样的操作。递归的核心思想是将问题分解为更小的子问题,直到达到基本情况(通常是链表末尾)。
195 5
算法系列之递归反转单链表
|
11月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
268 64
|
9月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
262 3
|
10月前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
151 5
|
11月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
270 5
|
11月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
205 2
|
11月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
245 2
|
11月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
490 0
|
12月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
134 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)

热门文章

最新文章