论文中的state-of-the-art

简介:   最近看了几篇计算机顶会和SCI,摘要里经常出现这个词,我以为是什么算法,查阅的知是“当前最高水平”,我记得老师说不能有这种模糊词语,需要表明提高了多少,看来论文都很水,即便是IEEE,SCI。

  最近看了几篇计算机顶会和SCI,摘要里经常出现这个词,我以为是什么算法,查阅的知是“当前最高水平”,我记得老师说不能有这种模糊词语,需要表明提高了多少,看来论文都很水,即便是IEEE,SCI。

目录
相关文章
|
5月前
|
算法 数据挖掘 数据处理
【博士每天一篇文献-综述】A Modified Echo State Network Model Using Non-Random Topology
本文介绍了一篇博士论文,提出了一种基于非随机拓扑结构的改进型Echo State Networks (ESN)模型,用于处理时间序列数据,通过在储层中使用复杂网络和聚类模型的拓扑结构,提高了模型性能并降低了计算成本,论文还展示了该模型在信号预测和图像分类中的应用。
50 3
【博士每天一篇文献-综述】A Modified Echo State Network Model Using Non-Random Topology
|
3月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
73 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
5月前
|
机器学习/深度学习 人工智能 算法
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
本文介绍了一种新型的尺度无标度高聚类回声状态网络(SHESN)模型,该模型通过模拟生物神经系统的特性,如小世界现象和无标度分布,显著提高了逼近复杂非线性动力学系统的能力,并在Mackey-Glass动态系统和激光时间序列预测等问题上展示了其优越的性能。
44 1
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
|
5月前
|
机器学习/深度学习 人工智能 算法
【博士每天一篇论文-综述】Deep Echo State Network (DeepESN)_ A Brief Survey
本文是2017年C. Gallicchio和A. Micheli在ArXiv上发表的综述论文,详细介绍了深度回声状态网络(DeepESN)的架构、属性、动力学分析及其在时间序列预测等领域的应用,并探讨了DeepESN在处理多时间尺度信息方面的优势和潜力。
103 2
【博士每天一篇论文-综述】Deep Echo State Network (DeepESN)_ A Brief Survey
|
5月前
|
机器学习/深度学习 存储 算法
【博士每天一篇论文-综述】Echo State Network Optimization: A Systematic Literature Review
本文综述了74篇关于Echo State Network(ESN)优化的研究文章,指出生物启发方法尤其是粒子群优化(PSO)是ESN参数优化的常用技术,探讨了ESN在不同参数和拓扑结构下的行为特性,同时识别了超参数优化、评估指标和数据集选择等方面的研究空白。
41 3
|
5月前
|
机器学习/深度学习 算法 物联网
【博士每天一篇论文-算法】Overview of Echo State Networks using Different Reservoirs and Activation Functions
本文研究了在物联网网络中应用回声状态网络(ESN)进行交通预测的不同拓扑结构,通过与SARIMA、CNN和LSTM等传统算法的比较,发现特定配置的ESN在数据速率和数据包速率预测方面表现更佳,证明了ESN在网络流量预测中的有效性。
38 4
|
5月前
|
机器学习/深度学习 算法 数据挖掘
【博士每天一篇文献-模型】Investigating Echo State Network Performance with Biologically-Inspired Hierarchical
本文研究了一种受果蝇生物启发的分层网络结构在回声状态网络(ESN)中的应用,通过引入层次随机块模型(HSBM)来生成具有更好结构性的网络拓扑,发现这种新拓扑结构的网络在Mackey-Glass系统预测和MNIST分类任务中表现出改善的整体解分布,从而提高了ESN的性能。
35 2
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【文献学习】Phase-Aware Speech Enhancement with Deep Complex U-Net
文章介绍了Deep Complex U-Net模型,用于复数值的语音增强,提出了新的极坐标掩码方法和wSDR损失函数,并通过多种评估指标验证了其性能。
71 1
|
算法
Single TPR论文解读
Single TPR是2015年提出来的,是基于TPR的进一步改进,TPR论文解读可以参考Topical PageRank(TPR)论文解读_Trouble…的博客-CSDN博客。
109 0
|
机器学习/深度学习 自然语言处理
【论文精读】COLING 2022 - DESED: Dialogue-based Explanation for Sentence-level Event Detection
最近许多句子级事件检测的工作都集中在丰富句子语义上,例如通过多任务或基于提示的学习。尽管效果非常好,但这些方法通常依赖于标签广泛的人工标注
115 0