Greenplum merge insert 用法与性能 (insert on conflict)-阿里云开发者社区

开发者社区> 阿里云数据库> 正文
登录阅读全文

Greenplum merge insert 用法与性能 (insert on conflict)

简介:

标签

PostgreSQL , Greenplum , merge insert , insert on conflict , 合并插入 , 有则更新 , 无则插入


背景

PostgreSQL insert on conflict语法非常强大,支持合并写入(当违反某唯一约束时,冲突则更新,不冲突则写入),同时支持流式计算。

流计算例子链接:

《PostgreSQL 流式统计 - insert on conflict 实现 流式 UV(distinct), min, max, avg, sum, count ...》

《HTAP数据库 PostgreSQL 场景与性能测试之 22 - (OLTP) merge insert|upsert|insert on conflict|合并写入》

《PostgreSQL upsert功能(insert on conflict do)的用法》

《PostgreSQL 10.0 preview 功能增强 - 支持分区表ON CONFLICT .. DO NOTHING》

PostgreSQL insert on conflict语法如下:

Command:     INSERT    
Description: create new rows in a table    
Syntax:    
[ WITH [ RECURSIVE ] with_query [, ...] ]    
INSERT INTO table_name [ AS alias ] [ ( column_name [, ...] ) ]    
    [ OVERRIDING { SYSTEM | USER} VALUE ]    
    { DEFAULT VALUES | VALUES ( { expression | DEFAULT } [, ...] ) [, ...] | query }    
    [ ON CONFLICT [ conflict_target ] conflict_action ]    
    [ RETURNING * | output_expression [ [ AS ] output_name ] [, ...] ]    
    
where conflict_target can be one of:    
    
    ( { index_column_name | ( index_expression ) } [ COLLATE collation ] [ opclass ] [, ...] ) [ WHERE index_predicate ]    
    ON CONSTRAINT constraint_name    
    
and conflict_action is one of:    
    
    DO NOTHING    
    DO UPDATE SET { column_name = { expression | DEFAULT } |    
                    ( column_name [, ...] ) = [ ROW ] ( { expression | DEFAULT } [, ...] ) |    
                    ( column_name [, ...] ) = ( sub-SELECT )    
                  } [, ...]    
              [ WHERE condition ]    

Greenplum的版本较低,还不支持insert on conflict的语法。

如果需要在Greenplum中实现类似的功能该如何操作?

DEMO

ID为PK,以它为合并列,举例。

1、目标表,也就是需要合并写入的目标:

create table t( id int primary key, c1 int , c2 int, c3 int, c4 int, c5 int, crt_time timestamp);    

2、中间表,也就是用户只管插入的表:

create table t_tmp(like t);    

写入一些中间记录。

insert into t_tmp values(1,1,2,3,null,null,now());    
insert into t_tmp values(1,1,2,4,null,null,now());    
insert into t_tmp values(1,1,2,3,null,7,now());    
insert into t_tmp values(1,1,null,3,5,6,now());    
postgres=# select * from t_tmp;    
 id | c1 | c2 | c3 | c4 | c5 |          crt_time              
----+----+----+----+----+----+----------------------------    
  1 |  1 |  2 |  3 |    |    | 2017-12-13 17:03:16.28482    
  1 |  1 |  2 |  4 |    |    | 2017-12-13 17:03:16.286302    
  1 |  1 |  2 |  3 |    |  7 | 2017-12-13 17:03:16.635121    
  1 |  1 |    |  3 |  5 |  6 | 2017-12-13 17:03:25.434191    
(4 rows)    

3、窗口合并,按唯一值约束,仅提取一条(可能存在窗口内合并的需求,例如按时间取最新,比如以最后一条为准,又或者以有值,且最新的为准)。

以有值切最新为准例子:

select distinct on (id)     
  id,    
  first_value(c1) over (partition by id order by (case when c1 is null then null else crt_time end) desc nulls last) as c1,    
  first_value(c2) over (partition by id order by (case when c2 is null then null else crt_time end) desc nulls last) as c2,    
  first_value(c3) over (partition by id order by (case when c3 is null then null else crt_time end) desc nulls last) as c3,    
  first_value(c4) over (partition by id order by (case when c4 is null then null else crt_time end) desc nulls last) as c4,    
  first_value(c5) over (partition by id order by (case when c5 is null then null else crt_time end) desc nulls last) as c5,    
  first_value(crt_time) over (partition by id order by crt_time desc) as crt_time    
  from t_tmp ;    
    
 id | c1 | c2 | c3 | c4 | c5 |          crt_time              
----+----+----+----+----+----+----------------------------    
  1 |  1 |  2 |  3 |  5 |  6 | 2017-12-13 17:03:25.434191    
(1 row)    

存储中间结果:

create table t_tmp1 (like t) ;    
    
insert into t_tmp1     
select distinct on (id)     
  id,    
  first_value(c1) over (partition by id order by (case when c1 is null then null else crt_time end) desc nulls last) as c1,    
  first_value(c2) over (partition by id order by (case when c2 is null then null else crt_time end) desc nulls last) as c2,    
  first_value(c3) over (partition by id order by (case when c3 is null then null else crt_time end) desc nulls last) as c3,    
  first_value(c4) over (partition by id order by (case when c4 is null then null else crt_time end) desc nulls last) as c4,    
  first_value(c5) over (partition by id order by (case when c5 is null then null else crt_time end) desc nulls last) as c5,    
  first_value(crt_time) over (partition by id order by crt_time desc) as crt_time    
  from t_tmp ;    

4、合并写入:

将窗口提取的结果,合并写入目标表。

4.1、INNER JOIN,覆盖旧记录,同时补齐旧的字段(以NULL为判断条件。如果新的记录没有值,则取旧记录的值。)提取。

create table t_tmp2 (like t);    
    
insert into t_tmp2    
select     
t_tmp.id,     
coalesce(t_tmp.c1, t.c1),     
coalesce(t_tmp.c2, t.c2),     
coalesce(t_tmp.c3, t.c3),     
coalesce(t_tmp.c4, t.c4),     
coalesce(t_tmp.c5, t.c5),     
coalesce(t_tmp.crt_time, t.crt_time)     
from    
t_tmp1 as t_tmp    
inner join     
t    
using (id);    

4.2、DELETE USING,删除全量表的符合条件的记录。

delete from t using t_tmp2 where t.id=t_tmp2.id;    

4.3、INSERT

insert into t    
select t_tmp1.* from t_tmp1 left join t_tmp2 using (id) where t_tmp2.* is null    
union all    
select * from t_tmp2;    

Greenplum merge insert 性能

硬件:使用一台64线程机器,单机启动48个segment。

1、全量数据20亿。

create table t(id int, c1 int , c2 int, c3 int, c4 int, c5 int, crt_time timestamp) with (APPENDONLY=true, ORIENTATION=column);    
    
insert into t select id, null,null,null,null,10000, now() from generate_series(1,2000000000) t(id);    

2、增量数据1000万条,涉及500万个ID。

create table t_tmp(like t);    
    
insert into t_tmp select random()*1000000, random()*100,null,null,null,null, clock_timestamp() from generate_series(1,2000000) t(id);    
insert into t_tmp select random()*2000000, null,random()*100,null,null,null, clock_timestamp() from generate_series(1,2000000) t(id);    
insert into t_tmp select random()*3000000, null,null,random()*100,null,null, clock_timestamp() from generate_series(1,2000000) t(id);    
insert into t_tmp select random()*4000000, null,null,null,random()*100,null, clock_timestamp() from generate_series(1,2000000) t(id);    
insert into t_tmp select random()*5000000, null,null,null,null,random()*100, clock_timestamp() from generate_series(1,2000000) t(id);    
    
总耗时4.5秒。    

3、合并。

增量数据,窗口合并去重。

create table t_tmp1 (like t) ;    
    
insert into t_tmp1     
select distinct on (id)     
  id,    
  first_value(c1) over (partition by id order by ((case when c1 is null then null else crt_time end) is null), (case when c1 is null then null else crt_time end) desc) as c1,    
  first_value(c2) over (partition by id order by ((case when c2 is null then null else crt_time end) is null), (case when c2 is null then null else crt_time end) desc) as c2,    
  first_value(c3) over (partition by id order by ((case when c3 is null then null else crt_time end) is null), (case when c3 is null then null else crt_time end) desc) as c3,    
  first_value(c4) over (partition by id order by ((case when c4 is null then null else crt_time end) is null), (case when c4 is null then null else crt_time end) desc) as c4,    
  first_value(c5) over (partition by id order by ((case when c5 is null then null else crt_time end) is null), (case when c5 is null then null else crt_time end) desc) as c5,    
  first_value(crt_time) over (partition by id order by crt_time desc) as crt_time    
  from t_tmp ;    
    
INSERT 0 3628283    
Time: 5208.968 ms    

使用增量数据,提取并合并旧数据。

create table t_tmp2 (like t);    
    
insert into t_tmp2    
select     
t_tmp.id,     
coalesce(t_tmp.c1, t.c1),     
coalesce(t_tmp.c2, t.c2),     
coalesce(t_tmp.c3, t.c3),     
coalesce(t_tmp.c4, t.c4),     
coalesce(t_tmp.c5, t.c5),     
coalesce(t_tmp.crt_time, t.crt_time)     
from    
t_tmp1 as t_tmp    
inner join     
t    
using (id);    
    
INSERT 0 3628282    
Time: 9504.092 ms    

删除旧数据。

delete from t using t_tmp2 where t.id=t_tmp2.id;    
    
DELETE 3628282    
Time: 15356.920 ms    

插入新增、以及合并的增量数据。

insert into t    
select t_tmp1.* from t_tmp1 left join t_tmp2 using (id) where t_tmp2.* is null    
union all    
select * from t_tmp2;    
    
INSERT 0 3628283    
Time: 778.014 ms    

数据校验

-- 中间结果    
    
postgres=# select * from t_tmp where id=9;    
 id | c1 | c2 | c3 | c4 | c5 |          crt_time              
----+----+----+----+----+----+----------------------------    
  9 | 99 |    |    |    |    | 2017-12-13 23:18:14.65243    
  9 |  7 |    |    |    |    | 2017-12-13 23:18:14.817107    
  9 |    |  9 |    |    |    | 2017-12-13 23:18:15.292311    
  9 |    | 56 |    |    |    | 2017-12-13 23:18:15.449415    
(4 rows)    
    
-- 中间结果    
    
postgres=# select * from t_tmp where id=446;    
 id  | c1 | c2 | c3 | c4 | c5 |          crt_time              
-----+----+----+----+----+----+----------------------------    
 446 | 43 |    |    |    |    | 2017-12-13 23:18:14.291335    
 446 | 16 |    |    |    |    | 2017-12-13 23:18:14.715026    
 446 | 45 |    |    |    |    | 2017-12-13 23:18:15.048879    
 446 |    | 34 |    |    |    | 2017-12-13 23:18:15.646904    
 446 |    |  7 |    |    |    | 2017-12-13 23:18:15.81838    
 446 |    |    | 12 |    |    | 2017-12-13 23:18:16.220083    
 446 |    |    | 22 |    |    | 2017-12-13 23:18:16.26496    
 446 |    |    |    | 97 |    | 2017-12-13 23:18:17.464355    
 446 |    |    |    |    | 56 | 2017-12-13 23:18:18.427068    
(9 rows)    
    
-- 使用窗口合并后结果    
    
postgres=# select * from t_tmp1 limit 10;    
 id  | c1 | c2 | c3 | c4 | c5 |          crt_time              
-----+----+----+----+----+----+----------------------------    
   9 |  7 | 56 |    |    |    | 2017-12-13 23:18:15.449415  -- 验证    
  25 | 69 |    |  1 |    |    | 2017-12-13 23:18:16.161339    
 169 | 74 | 33 |  3 |    |    | 2017-12-13 23:18:16.71554    
 185 | 22 |    |    |    |    | 2017-12-13 23:18:14.93206    
 217 | 11 | 20 | 26 |    | 59 | 2017-12-13 23:18:17.911174    
 270 | 55 |    | 42 |    |    | 2017-12-13 23:18:16.494782    
 286 | 65 | 77 | 17 |    | 75 | 2017-12-13 23:18:17.895121    
 430 | 12 |    | 56 |    |    | 2017-12-13 23:18:16.744847    
 446 | 45 |  7 | 22 | 97 | 56 | 2017-12-13 23:18:18.427068  -- 验证    
 478 | 23 | 56 |    | 25 | 77 | 2017-12-13 23:18:18.293153    
(10 rows)    
    
-- 合并到全量表后结果    
    
postgres=# select * from t where id=9;    
 id | c1 | c2 | c3 | c4 |  c5   |          crt_time              
----+----+----+----+----+-------+----------------------------    
  9 |  7 | 56 |    |    | 10000 | 2017-12-13 23:18:15.449415    
(1 row)    
    
postgres=# select * from t where id=446;    
 id  | c1 | c2 | c3 | c4 | c5 |          crt_time              
-----+----+----+----+----+----+----------------------------    
 446 | 45 |  7 | 22 | 97 | 56 | 2017-12-13 23:18:18.427068    
(1 row)    

4、合并总耗时:

35秒

5、耗时分布

增量数据1000万条,涉及500万个ID。

4.5秒

增量数据,窗口合并去重。

5.2秒

使用增量数据,提取并合并旧数据。

9.5秒

删除旧数据。

15秒

插入新增、以及合并的增量数据。

0.7秒

Greenplum merge insert 限制

比较复杂、而且不支持新值使用NULL值(要支持的话,得修改一下覆盖逻辑)。

参考

《Greenplum 排序nulls first|last的 SQL写法实现》

《PostgreSQL 流式统计 - insert on conflict 实现 流式 UV(distinct), min, max, avg, sum, count ...》

《HTAP数据库 PostgreSQL 场景与性能测试之 22 - (OLTP) merge insert|upsert|insert on conflict|合并写入》

《PostgreSQL upsert功能(insert on conflict do)的用法》

《PostgreSQL 10.0 preview 功能增强 - 支持分区表ON CONFLICT .. DO NOTHING》

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
阿里云数据库
使用钉钉扫一扫加入圈子
+ 订阅

帮用户承担一切数据库风险,给您何止是安心!

官方博客
链接