ESFramework网络通信框架介绍之(2)――网络通信消息NetMessage

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: ESFramework网络通信框架与元数据 较之C++而言,.NET是一个更加“动态”的平台,其动态能力建立在反射机制之上,而反射的基础是“元数据”。    上文已经提到过,如果一个框架要为我们的应用做更多的事情,那么这个框架必须建立更多的标准,必须对框架自己要处理的消息有更多的了解,所以,每个消息都要是自描述的,也就是说每个消息要包含它自己的“元数据”。

ESFramework网络通信框架与元数据

较之C++而言,.NET是一个更加“动态”的平台,其动态能力建立在反射机制之上,而反射的基础是“元数据”。

   
上文已经提到过,如果一个框架要为我们的应用做更多的事情,那么这个框架必须建立更多的标准,必须对框架自己要处理的消息有更多的了解,所以,每个消息都要是自描述的,也就是说每个消息要包含它自己的“元数据”。那么,“元数据”位于消息的何处了?你一定想到了,对,是消息头(MessagHeader)。

    在ESFramework网络通信框架中,消息NetMessage由“消息头+主体”构成,并且消息头和主体都必须实现上文讲到的IContract接口。消息头既是本条NetMessage的元数据,其中包含了诸如消息长度、消息类型等描述信息。ESFramework网络通信框架为了能识别每个消息的元数据,必须再建立一个“标准”,这个标准便是IMessageHeader接口。为了简化后面的计算和应用,ESFramework要求所有的消息头的长度是固定的,比如都是64字节。注意,固定消息头的长度不是必须的,但是这会降低框架的复杂度。
我们来看看IMessageHeader中包含了些什么信息:    

 1     public   interface  IMessageHeader : IContract ,ICloneable
 2      {
 3           int  MessageBodyLength    { get  ; set  ;}  // 本消息主体的长度
 4           int  TypeKey            { get  ; set  ;}  // 请求的服务目录类型
 5           int  ServiceKey        { get  ; set  ;}  // 请求类型
 6           int  ServiceItemIndex{ get  ; set  ;}  // 请求细分索引
 7           int  RandomNum        { get  ; set  ;}  // 用于将回复与请求一一对应起来                
 8           int  Result            { get  ; set  ;}  // 服务结果,1表示成功。其它值对应ServiceResultType            
 9           string  DestUserID   { get  ; set  ;}  // 接收消息的目标用户编号                
10           string  UserID        { get  ; set  ;}  // 发出请求的用户编号    
11           bool    P2PAck       { get  ; set  ;}  // 仅仅对P2P消息有效,1表示为服务器转发P2P消息的Ack,Result反映了转发成功还是失败。Ack消息主体为null
12           bool    ZipMe        { get  ; set  ;}  // 控制对于本条消息是否启用压缩/解压缩,如果有些消息比较短小,则将IMessageHeader.ZipMe设为false
13      }

    IMessageHeader现在已经包含了比较多的内容了,其实刚开始时,IMessageHeader仅仅需要32个字节就足够,随着ESFramework的演化成长,越来越多的信息慢慢加了进来,现在IMessageHeader的长度基本上需要96字节。加进来的内容对很多应用是必须的。

    比如,DestUserID表明了本条消息不是交给服务器处理的,而是要服务器转发给IDDestUserID的用户,这为框架引入了处理“P2P消息”的能力;有时,用户可能需要发送一系列按顺序的P2P消息,如果是基于UDP,则必须要等到对方确认收到上一个消息后,才可以发送下一个消息,于是就有了P2PAck字段。基于对网络上传输的消息进行压缩是常见的要求,而有些比较短小的消息又不必进行压缩的情况,就出现了ZipMe字段,表明消息是否被压缩/解压过。

    而在你的具体应用中,消息头应该包括哪些内容,由你的应用的需求来决定,比如,你的应用可能从来不需要处理P2P消息,那么在实现IMessageHeader接口时,就不需要关注DestUserID字段和P2PAck字段,并且在你的实际的消息头的字节流中也不需要为它们提供“位置”;而且在使用ESFramework网络通信框架装配你的应用的时候,也不用“接插”“P2PMessage处理器”。这是非常灵活的。

    刚才看到的是消息头的结构,那么消息主体是什么了?在框架这一层,由于框架对所有的具体消息的主体内容一无所知,即使框架知道消息主体可以被解析为一个IContract“对象”,但是在这一层,并没有足够的信息给框架去将主体解析为IContract。所以,框架中的消息主体仍然用字节流byte[]表示,而且框架也根本不关心这个消息主体如何解析、如何处理,这些都是应用的事情。框架已经通过消息的元数据对该消息有足够的了解了。
消息NetMessage的定义如下:

 1     [Serializable]
 2       public   class  NetMessage
 3      {
 4           public  IMessageHeader Header  =   null  ;
 5           public   byte []         Body    =   null  ;  // 可以经过压缩、变换Hook
 6           public   object          Tag     =   null  ;  // 用于在将NetMessage交给IDataDealer时传递额外的信息,不影响ToStream,且很少使用
 7 
 8           public  NetMessage()
 9          {
10          }
11 
12           #region  Ctor ,ToStream
13           public  NetMessage(IMessageHeader header , byte [] body)
14          {
15                //省略实现......             
23          }
24 
25           public   byte [] ToStream()
26          {    
27            //省略实现......            
41          }
42           #endregion
43 
44           #region  Length
45           public   int  Length
46          {
47             //省略实现......            
57          }
58           #endregion
59 
60      }

    Tag字段用于存放可能在后面的消息处理链中需要使用到的额外信息,比如,基于UDP时,Tag可以存放发送本条消息的客户的IPEndPoint,而这个信息可能会被后面的消息处理器用到。
    RoundedMessage包含了比NetMessage更丰富的信息,从网络进口接收到的实际上是RoundedMessage,有时消息分配器或处理器可能需要用到类似ConnectID这样的信息。

    在客户端和应用这一层,NetMessage可以向下转换,因为此时,我们已经知道了消息主体的结构,这个消息主体已经可以被解析为IContract了,所以NetMessage可以转换为Message:  

Message 
    public class Message 
    {
        
private IMessageHeader header ;
        
private IContract body   ;    

        
public Message(IMessageHeader theHeader ,IContract theBody)
        {
            
//省略实现......                 
        }    
    
        
public NetMessage ToNetMessage()
        {
            
//省略实现......            
        }
    
        
#region ToStream ,GetStreamLength
        
public int GetStreamLength()
        {
            
//省略实现......            
        }

        
public byte[] ToStream()
        {
            
//省略实现......            
        }

        
public void ToStream(byte[] buff, int offset)
        {
            
//省略实现......                 
        }
        
#endregion

        
#region Header ,Body ,MessageHelper
        
public IMessageHeader Header
        {
           //省略实现......            
        }

        
public IContract Body
        {
           //省略实现......            
        }    
        
#endregion    
        
    }

    可以看到,

NetMessage已经是一个完全的面向对象的消息了。而至于主体到底含有什么具体的内容,还需要对主体IContract向下转换到具体的协议上才行。这通常是消息处理器的工作。

关于消息处理器和处理器工厂的介绍,请留意下篇文章。 

ESFramework网络通信框架介绍之(3――消息处理器和处理器工厂 

从2004年7月开始,就一直从事N层C/S架构的服务端的开发,时至今日,慢慢的积累了一些开发经验,ESFramework网络通信框架体系便是这些经验的总结。ESFramework网络通信框架这是一套完全可复用的、灵活的、单纯的、支持N层C/S架构的网络通信框架


上一篇:ESFramework网络通信框架介绍之(1)――网络通信消息协议接口IContract

转到  :
ESFramework 可复用的网络通信框架(序)

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

目录
相关文章
|
1月前
|
监控 安全
从 Racket 语言出发,创新员工网络监控软件的框架
在数字化企业环境中,员工网络监控软件对于保障信息安全和提升效率至关重要。Racket 语言凭借其独特特性和强大功能,为开发创新的监控软件提供了新可能。通过捕获和分析网络数据包、记录员工网络活动日志,甚至构建复杂的监控框架,Racket 能够满足企业的定制化需求,为企业信息安全和管理提供强有力支持。未来,基于 Racket 的创新解决方案将不断涌现。
37 6
|
6天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
40 6
|
14天前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
38 3
|
7天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
26 4
|
7天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
23 1
|
25天前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
42 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
6天前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
17 0
|
4天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第31天】本文将探讨网络安全和信息安全的重要性,以及如何通过理解和应用相关的技术和策略来保护我们的信息。我们将讨论网络安全漏洞、加密技术以及如何提高安全意识等主题。无论你是IT专业人士,还是对网络安全感兴趣的普通用户,都可以从中获得有用的信息和建议。
10 1
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第31天】随着互联网的普及,网络安全问题日益突出。本文将探讨网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者了解网络安全的重要性,提高自身的网络安全防护能力。