ESFramework网络通信框架介绍之(2)――网络通信消息NetMessage

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: ESFramework网络通信框架与元数据 较之C++而言,.NET是一个更加“动态”的平台,其动态能力建立在反射机制之上,而反射的基础是“元数据”。    上文已经提到过,如果一个框架要为我们的应用做更多的事情,那么这个框架必须建立更多的标准,必须对框架自己要处理的消息有更多的了解,所以,每个消息都要是自描述的,也就是说每个消息要包含它自己的“元数据”。

ESFramework网络通信框架与元数据

较之C++而言,.NET是一个更加“动态”的平台,其动态能力建立在反射机制之上,而反射的基础是“元数据”。

   
上文已经提到过,如果一个框架要为我们的应用做更多的事情,那么这个框架必须建立更多的标准,必须对框架自己要处理的消息有更多的了解,所以,每个消息都要是自描述的,也就是说每个消息要包含它自己的“元数据”。那么,“元数据”位于消息的何处了?你一定想到了,对,是消息头(MessagHeader)。

    在ESFramework网络通信框架中,消息NetMessage由“消息头+主体”构成,并且消息头和主体都必须实现上文讲到的IContract接口。消息头既是本条NetMessage的元数据,其中包含了诸如消息长度、消息类型等描述信息。ESFramework网络通信框架为了能识别每个消息的元数据,必须再建立一个“标准”,这个标准便是IMessageHeader接口。为了简化后面的计算和应用,ESFramework要求所有的消息头的长度是固定的,比如都是64字节。注意,固定消息头的长度不是必须的,但是这会降低框架的复杂度。
我们来看看IMessageHeader中包含了些什么信息:    

 1     public   interface  IMessageHeader : IContract ,ICloneable
 2      {
 3           int  MessageBodyLength    { get  ; set  ;}  // 本消息主体的长度
 4           int  TypeKey            { get  ; set  ;}  // 请求的服务目录类型
 5           int  ServiceKey        { get  ; set  ;}  // 请求类型
 6           int  ServiceItemIndex{ get  ; set  ;}  // 请求细分索引
 7           int  RandomNum        { get  ; set  ;}  // 用于将回复与请求一一对应起来                
 8           int  Result            { get  ; set  ;}  // 服务结果,1表示成功。其它值对应ServiceResultType            
 9           string  DestUserID   { get  ; set  ;}  // 接收消息的目标用户编号                
10           string  UserID        { get  ; set  ;}  // 发出请求的用户编号    
11           bool    P2PAck       { get  ; set  ;}  // 仅仅对P2P消息有效,1表示为服务器转发P2P消息的Ack,Result反映了转发成功还是失败。Ack消息主体为null
12           bool    ZipMe        { get  ; set  ;}  // 控制对于本条消息是否启用压缩/解压缩,如果有些消息比较短小,则将IMessageHeader.ZipMe设为false
13      }

    IMessageHeader现在已经包含了比较多的内容了,其实刚开始时,IMessageHeader仅仅需要32个字节就足够,随着ESFramework的演化成长,越来越多的信息慢慢加了进来,现在IMessageHeader的长度基本上需要96字节。加进来的内容对很多应用是必须的。

    比如,DestUserID表明了本条消息不是交给服务器处理的,而是要服务器转发给IDDestUserID的用户,这为框架引入了处理“P2P消息”的能力;有时,用户可能需要发送一系列按顺序的P2P消息,如果是基于UDP,则必须要等到对方确认收到上一个消息后,才可以发送下一个消息,于是就有了P2PAck字段。基于对网络上传输的消息进行压缩是常见的要求,而有些比较短小的消息又不必进行压缩的情况,就出现了ZipMe字段,表明消息是否被压缩/解压过。

    而在你的具体应用中,消息头应该包括哪些内容,由你的应用的需求来决定,比如,你的应用可能从来不需要处理P2P消息,那么在实现IMessageHeader接口时,就不需要关注DestUserID字段和P2PAck字段,并且在你的实际的消息头的字节流中也不需要为它们提供“位置”;而且在使用ESFramework网络通信框架装配你的应用的时候,也不用“接插”“P2PMessage处理器”。这是非常灵活的。

    刚才看到的是消息头的结构,那么消息主体是什么了?在框架这一层,由于框架对所有的具体消息的主体内容一无所知,即使框架知道消息主体可以被解析为一个IContract“对象”,但是在这一层,并没有足够的信息给框架去将主体解析为IContract。所以,框架中的消息主体仍然用字节流byte[]表示,而且框架也根本不关心这个消息主体如何解析、如何处理,这些都是应用的事情。框架已经通过消息的元数据对该消息有足够的了解了。
消息NetMessage的定义如下:

 1     [Serializable]
 2       public   class  NetMessage
 3      {
 4           public  IMessageHeader Header  =   null  ;
 5           public   byte []         Body    =   null  ;  // 可以经过压缩、变换Hook
 6           public   object          Tag     =   null  ;  // 用于在将NetMessage交给IDataDealer时传递额外的信息,不影响ToStream,且很少使用
 7 
 8           public  NetMessage()
 9          {
10          }
11 
12           #region  Ctor ,ToStream
13           public  NetMessage(IMessageHeader header , byte [] body)
14          {
15                //省略实现......             
23          }
24 
25           public   byte [] ToStream()
26          {    
27            //省略实现......            
41          }
42           #endregion
43 
44           #region  Length
45           public   int  Length
46          {
47             //省略实现......            
57          }
58           #endregion
59 
60      }

    Tag字段用于存放可能在后面的消息处理链中需要使用到的额外信息,比如,基于UDP时,Tag可以存放发送本条消息的客户的IPEndPoint,而这个信息可能会被后面的消息处理器用到。
    RoundedMessage包含了比NetMessage更丰富的信息,从网络进口接收到的实际上是RoundedMessage,有时消息分配器或处理器可能需要用到类似ConnectID这样的信息。

    在客户端和应用这一层,NetMessage可以向下转换,因为此时,我们已经知道了消息主体的结构,这个消息主体已经可以被解析为IContract了,所以NetMessage可以转换为Message:  

Message 
    public class Message 
    {
        
private IMessageHeader header ;
        
private IContract body   ;    

        
public Message(IMessageHeader theHeader ,IContract theBody)
        {
            
//省略实现......                 
        }    
    
        
public NetMessage ToNetMessage()
        {
            
//省略实现......            
        }
    
        
#region ToStream ,GetStreamLength
        
public int GetStreamLength()
        {
            
//省略实现......            
        }

        
public byte[] ToStream()
        {
            
//省略实现......            
        }

        
public void ToStream(byte[] buff, int offset)
        {
            
//省略实现......                 
        }
        
#endregion

        
#region Header ,Body ,MessageHelper
        
public IMessageHeader Header
        {
           //省略实现......            
        }

        
public IContract Body
        {
           //省略实现......            
        }    
        
#endregion    
        
    }

    可以看到,

NetMessage已经是一个完全的面向对象的消息了。而至于主体到底含有什么具体的内容,还需要对主体IContract向下转换到具体的协议上才行。这通常是消息处理器的工作。

关于消息处理器和处理器工厂的介绍,请留意下篇文章。 

ESFramework网络通信框架介绍之(3――消息处理器和处理器工厂 

从2004年7月开始,就一直从事N层C/S架构的服务端的开发,时至今日,慢慢的积累了一些开发经验,ESFramework网络通信框架体系便是这些经验的总结。ESFramework网络通信框架这是一套完全可复用的、灵活的、单纯的、支持N层C/S架构的网络通信框架


上一篇:ESFramework网络通信框架介绍之(1)――网络通信消息协议接口IContract

转到  :
ESFramework 可复用的网络通信框架(序)

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

目录
相关文章
|
5天前
|
虚拟化 网络虚拟化 Windows
导入虚拟机到Hyper-V环境时,理解并配置网络适配器设置是确保网络通信的关键
在Hyper-V环境中,正确配置虚拟机的网络适配器是确保其网络通信的关键。需先启用Hyper-V功能并创建虚拟交换机。接着,在Hyper-V管理器中选择目标虚拟机,添加或配置网络适配器,选择合适的虚拟交换机(外部、内部或私有),并根据需求配置VLAN、MAC地址等选项。最后,启动虚拟机并验证网络连接,确保其能正常访问外部网络、与主机及其他虚拟机通信。常见问题包括无法访问外部网络或获取IP地址,需检查虚拟交换机和适配器设置。
|
6天前
|
监控 安全 Cloud Native
企业网络架构安全持续增强框架
企业网络架构安全评估与防护体系构建需采用分层防御、动态适应、主动治理的方法。通过系统化的实施框架,涵盖分层安全架构(核心、基础、边界、终端、治理层)和动态安全能力集成(持续监控、自动化响应、自适应防护)。关键步骤包括系统性风险评估、零信任网络重构、纵深防御技术选型及云原生安全集成。最终形成韧性安全架构,实现从被动防御到主动免疫的转变,确保安全投入与业务创新的平衡。
|
3月前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
118 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
4月前
|
网络协议 物联网 数据处理
C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势
本文探讨了C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势。文章详细讲解了使用C语言实现网络通信程序的基本步骤,包括TCP和UDP通信程序的实现,并讨论了关键技术、优化方法及未来发展趋势,旨在帮助读者掌握C语言在网络通信中的应用技巧。
96 2
|
4月前
|
人工智能 自然语言处理
WebDreamer:基于大语言模型模拟网页交互增强网络规划能力的框架
WebDreamer是一个基于大型语言模型(LLMs)的网络智能体框架,通过模拟网页交互来增强网络规划能力。它利用GPT-4o作为世界模型,预测用户行为及其结果,优化决策过程,提高性能和安全性。WebDreamer的核心在于“做梦”概念,即在实际采取行动前,用LLM预测每个可能步骤的结果,并选择最有可能实现目标的行动。
105 1
WebDreamer:基于大语言模型模拟网页交互增强网络规划能力的框架
|
4月前
|
JSON 数据处理 Swift
Swift 中的网络编程,主要介绍了 URLSession 和 Alamofire 两大框架的特点、用法及实际应用
本文深入探讨了 Swift 中的网络编程,主要介绍了 URLSession 和 Alamofire 两大框架的特点、用法及实际应用。URLSession 由苹果提供,支持底层网络控制;Alamofire 则是在 URLSession 基础上增加了更简洁的接口和功能扩展。文章通过具体案例对比了两者的使用方法,帮助开发者根据需求选择合适的网络编程工具。
73 3
|
4月前
|
网络协议 Unix Linux
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架
131 0
|
4月前
|
网络协议 网络安全 Apache
一个整合性、功能丰富的.NET网络通信框架
一个整合性、功能丰富的.NET网络通信框架
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
95 17
|
3月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章