MySQL中的批量初始化数据的对比测试(r12笔记第71天)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介:   一直以来对于MySQL的存储过程性能还是颇有微词的,说实话够慢的。有时候想做一些对比测试,存储过程初始化几万条数据都得好一会儿,这功夫Oracle类似的测试早都做完了,今天就赶个晚班车,把这个没做完的任务完成了。

  一直以来对于MySQL的存储过程性能还是颇有微词的,说实话够慢的。有时候想做一些对比测试,存储过程初始化几万条数据都得好一会儿,这功夫Oracle类似的测试早都做完了,今天就赶个晚班车,把这个没做完的任务完成了。

    我大体测试了一下,以100万数据为基准,初始化性能的提升会从近8分钟提升到10多秒钟。

     我自己尝试了以下4种方案。

     1.存储过程批量导入(近8分钟)

     2.存储过程批量导入内存表,内存表导入目标表(近5分钟)

     3.使用shell脚本生成数据,使用load data的方式导入数据(近20秒)

     4.使用shell脚本生成数据,使用load data的方式导入内存表,内存表数据导入目标表(近18秒)

方案1:存储过程导入


我们测试使用的表为users,InnoDB存储引擎,计划初始化数据为100万。

create table users(
userid int(11) unsigned not null,
user_name varchar(64) default null,
primary key(userid)
)engine=innodb default charset=UTF8;使用如下的方式来初始化数据,我们就使用存储过程的方式。

delimiter $$
drop procedure if exists proc_auto_insertdata$$
create procedure proc_auto_insertdata()
begin
    declare
    init_data integer default 1;
    while init_data<=100000 do
    insert into users values(init_data,concat('user'    ,init_data));
    set init_data=init_data+1;
    end while;
end$$
delimiter ;
call proc_auto_insertdata();因为我对这个过程还是信心不足,所以就抓取了十分之一的数据10万条数据,测试的结果是执行了47秒钟左右,按照这个数据量大概需要8分钟左右。
> source create_proc.sql
Query OK, 0 rows affected, 1 warning (0.04 sec)
Query OK, 0 rows affected (0.02 sec)
Query OK, 1 row affected (47.41 sec)    所以这个过程虽然是一步到位,但是性能还是差强人意,我看有 的同学在不同的配置下性能差别很大,有的同学达到了近50分钟。这一点上以自己的测试环境为准,然后能够得到一个梯度的数据就可以了。

   我们来看看第二个方案。

方案2:使用内存表

第二个方案,我们尝试使用内存表来优化,这样一来我们就需要创建一个内存表,比如名叫users_memory。

create table users_memory(
userid int(11) unsigned not null,
user_name varchar(64) default null,
primary key(userid)
)engine=memory default charset=UTF8;然后使用如下的存储过程来导入数据,其实逻辑和第一个存储过程几乎一样,就表名不一样而已,这个里面数据是入到内存表中。

delimiter $$
drop procedure if exists proc_auto_insertdata$$
create procedure proc_auto_insertdata()
begin
    declare
    init_data integer default 1;
    while init_data<=1000000 do
    insert into users_memory values(init_data,concat('user'    ,init_data));
    set init_data=init_data+1;
    end while;
end$$
delimiter ;
call proc_auto_insertdata ;这个过程可能会抛出table is full相关的信息,我们可以适当调整参数tmpdir(修改需要重启),max_heap_table_size(在线修改),然后重试基本就可以了。
> source create_proc_mem.sql
Query OK, 0 rows affected (0.00 sec)
Query OK, 0 rows affected (0.00 sec)
Query OK, 1 row affected (4 min 40.23 sec)这个过程用时近5分钟,剩下的内存表数据导入InnoDB表很快了,几秒钟即可搞定。
> insert into users select *from users_memory;
整个过程下来不到5分钟,和第一种方案相比快了很多。

方案3:使用程序/脚本生成数据,批量导入

第三种方案只是抛砖引玉,如果你对php熟悉,可以完全用php来写,对哪种语言脚本熟悉,只要实现需求即可。比如我使用shell,也没有使用什么特别的技巧。
shell脚本内容如下:

for i in {1..1000000}
do
echo  $i,user_$i
done > a.lst脚本写得很简单,生成数据的过程大概耗时8秒钟,文件有18M左右。

# time sh a.sh
real    0m8.366s
user    0m6.312s
sys     0m2.039s然后使用load data来导入数据,整个过程花费时间大概在8秒钟左右,所以整个过程的时间在19秒以内。

> load data infile '/U01/testdata/a.lst'  into table users fields terminated by ','  ;
Query OK, 1000000 rows affected (8.05 sec)
Records: 1000000  Deleted: 0  Skipped: 0  Warnings: 0

方案4:内存表,外部文件导入混合

第四种方案是临时想的,也是结合了这几种方案的一些特点,当然不能说它就是最好的。

首先使用脚本生成数据,还是和方案3一样,估算为9秒钟,导入数据到内存表users_memory里面。

> load data infile '/U01/testdata/a.lst'  into table users_memory fields terminated by ','  ;
Query OK, 1000000 rows affected (1.91 sec)
Records: 1000000  Deleted: 0  Skipped: 0  Warnings: 0然后把内存表的数据导入目标表users

> insert into users select *from users_memory;                                   
Query OK, 1000000 rows affected (7.48 sec)
Records: 1000000  Duplicates: 0  Warnings: 0整个过程耗时在18秒,和第三种方案很相似,看起来略微复杂了或者啰嗦了一些。

   以上几种方案只是个人的一些简单测试总结,如果你有好的方案,希望多提意见,多多沟通。


扫码或者长按如下的图片都可以关注我的公众号,继续努力中。。。


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
193 43
|
23天前
|
存储 SQL 关系型数据库
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
|
8天前
|
存储 数据可视化 测试技术
一个测试工程师的实战笔记:我是如何在Postman和Apipost之间做出选择的?
优秀的API测试工具应该具备: 分层设计:既有可视化操作,也开放代码层深度定制 场景感知:自动识别加密需求推荐处理方案 协议包容:不强迫开发者为了不同协议切换工具 数据主权:允许自主选择数据存储位置
39 7
|
14天前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
43 9
|
8天前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
19 2
|
15天前
|
存储 关系型数据库 MySQL
MySQL进阶突击系列(09)数据磁盘存储模型 | 一行数据怎么存?
文中详细介绍了MySQL数据库中一行数据在磁盘上的存储机制,包括表空间、段、区、页和行的具体结构,以及如何设计和优化行数据存储以提高性能。
|
14天前
|
存储 SQL 关系型数据库
【YashanDB 知识库】MySQL 迁移至崖山 char 类型数据自动补空格问题
问题分类】功能使用 【关键字】char,char(1) 【问题描述】MySQL 迁移至崖山环境,字段类型源端和目标端都为 char(2),但应用存储的数据为'0'、'1',此时崖山查询该表字段时会自动补充空格 【问题原因分析】mysql 有 sql_mode 控制,检查是否启用了 PAD_CHAR_TO_FULL_LENGTH SQL 模式。如果启用了这个模式,MySQL 才会保留 CHAR 类型字段的尾随空格,默认没有启动。 #查看sql_mode mysql> SHOW VARIABLES LIKE 'sql_mode'; 【解决/规避方法】与应用确认存储的数据,正确定义数据
|
3月前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
200 6
|
2月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
|
23天前
|
JSON 前端开发 测试技术
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
94 10
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡

热门文章

最新文章

  • 1
    小鱼深度评测 | 通义灵码2.0,不仅可跨语言编码,自动生成单元测试,更炸裂的是集成DeepSeek模型且免费使用,太炸裂了。
  • 2
    3天功能开发→3小时:通义灵码2.0+DEEPSEEK实测报告,单元测试生成准确率92%的秘密
  • 3
    Potpie.ai:比Copilot更狠!这个AI直接接管项目代码,自动Debug+测试+开发全搞定
  • 4
    【01】噩梦终结flutter配安卓android鸿蒙harmonyOS 以及next调试环境配鸿蒙和ios真机调试环境-flutter项目安卓环境配置-gradle-agp-ndkVersion模拟器运行真机测试环境-本地环境搭建-如何快速搭建android本地运行环境-优雅草卓伊凡-很多人在这步就被难倒了
  • 5
    基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
  • 6
    大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
  • 7
    「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
  • 8
    用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
  • 9
    阿里云零门槛、轻松部署您的专属 DeepSeek模型体验测试
  • 10
    以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡