MySQL转换分区表&索引重用

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 背景:生产环境下,大表数据量剧增,影响到了SQL的执行效率;业务越来越多,陆陆续续增加的索引并不是很合理,为了提高索引的使用率,需要把不必要的索引合并起来,减少索引的数量,提高索引的使用率 方法:大表水平切分-->分区表转换;综合利用联合索引的特点,去掉...

背景:生产环境下,大表数据量剧增,影响到了SQL的执行效率;业务越来越多,陆陆续续增加的索引并不是很合理,为了提高索引的使用率,需要把不必要的索引合并起来,减少索引的数量,提高索引的使用率

方法:大表水平切分-->分区表转换;综合利用联合索引的特点,去掉一些多余的单列索引和一些重复的联合索引

这篇博文的主要内容:
转换分区表的方法:直接alter即可(http://blog.itpub.net/29510932/viewspace-1724111/;
分区表效率上的提升:一直以来好奇提升程度有多少这次顺便验证一下(*/ω\*);
索引合并的策略;

------------------------------------------------------------------------------------------------------------------正文-------------------------------------------------------------------------------------------------------------------------

分区表效率上的提升,依然采用了sysbench-0.5来进行测试,
虚拟机:
CPU:Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz,逻辑核心8个


内存:32GB

硬盘:250G


采用五张表,每张表2000W数据,做两组对比:单表  vs  分区表(十个分区,每个分区200W数据)
测试脚本需要注意的地方:跨分区的查询较少,大部分都是在一个分区内;读写混合,包含order by,count(*)等操作;所有查询均用到索引;
测试时间两个小时,结果如下:
总体延时对比(ms)


QPS对比


虽说基准测试的结果倾向于理想状况,不过在中高负载下,响应时间降低了超过30%还是挺吓人的Σ( ° △ °|||)︴)
不过这也证明了,DB最大的瓶颈还是在IO~(顺序读最佳)


索引合并的策略:
这里简单写写~
MySQL本身有二级索引和merge_index的特性,这些留在以后再详细写(有生之年系列+1)
生产环境的索引如图(为了效果就不打码了,领导看到了不要打我~_(:з」∠)_)


箭头所指就是这次修改索引的目标,可以看到这三个索引分别是idx1<shop_id>, idx2<shop_id,pay_time>, idx3<order_status,shop_id,pay_time>
MySQL的索引利用有如下几个特点: 一张表只能用上一个索引(或者是merge_index );如果where条件中包含 联合索引的前置列,那么联合索引也能利用起来

比如说:有idx2存在的情况下,如果where条件只有shop_id,idx2也会被MySQL使用,同样的,where条件包含了shop_id,pay_time,还有其他列的(比如使用idx3的情况),也能用这个联合索引,
如果where条件中没有shop_id这个前置列的话,这个联合索引就不能被利用了~

注意:where条件只有shop_id的情况,使用idx2可能会比idx1要有更多的开销(联合索引体积更大), 所以要权衡 好“ 精简索引”和“列使用频率 ”孰轻孰重 ,做出正确的选择(当然绝大多数时候这种开销是可以忽略不计的)。

------------------------------------------------------------------------------------------------------------分区表相关的其他操作---------------------------------------------------------------------------------------------------------------
分区表的管理操作


删除分区:

alter table emp drop partition p1;

不可以删除hash或者key分区。

一次性删除多个分区,alter table emp drop partition p1,p2;

 

增加分区:

alter table emp add partition (partition p3 values less than (4000));

alter table empl add partition (partition p3 values in (40));

 

分解分区:

Reorganizepartition关键字可以对表的部分分区或全部分区进行修改,并且不会丢失数据。分解前后分区的整体范围应该一致。

alter table te

reorganize partition p1 into

(

partition p1 values less than (100),

partition p3 values less than (1000)

); ----不会丢失数据

 

合并分区:

Merge分区:把2个分区合并为一个。
alter table te

reorganize partition p1,p3 into

(partition p1 values less than (1000));

----不会丢失数据


重新定义hash分区表:

Alter table emp partition by hash(salary)partitions 7;

----不会丢失数据

重新定义range分区表:

Alter table emp partitionbyrange(salary)

(

partition p1 values less than (2000),

partition p2 values less than (4000)

); ----不会丢失数据


删除表的所有分区:


Alter table emp removepartitioning;--不会丢失数据


重建分区:

这和先删除保存在分区中的所有记录,然后重新插入它们,具有同样的效果。它可用于整理分区碎片。

ALTER TABLE emp rebuild partitionp1,p2;

 

优化分区:

如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB,或TEXT类型的列)作了许多修改,可以使用“ALTER TABLE ... OPTIMIZE PARTITION”来收回没有使用的空间,并整理分区数据文件的碎片。

ALTER TABLE emp optimize partition p1,p2;

 

分析分区:

读取并保存分区的键分布。

ALTER TABLE emp analyze partition p1,p2;

 

修补分区:

修补被破坏的分区。

ALTER TABLE emp repairpartition p1,p2;


检查分区:

可以使用几乎与对非分区表使用CHECK TABLE 相同的方式检查分区。

ALTER TABLE emp CHECK partition p1,p2;

这个命令可以告诉你表emp的分区p1,p2中的数据或索引是否已经被破坏。如果发生了这种情况,使用“ALTER TABLE ... REPAIR PARTITION”来修补该分区。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
13天前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
|
2月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
2月前
|
存储 NoSQL 关系型数据库
为什么MySQL不使用红黑树做索引
本文详细探讨了MySQL索引机制,解释了为何添加索引能提升查询效率。索引如同数据库的“目录”,在数据量庞大时提高查询速度。文中介绍了常见索引数据结构:哈希表、有序数组和搜索树(包括二叉树、平衡二叉树、红黑树、B-树和B+树)。重点分析了B+树在MyISAM和InnoDB引擎中的应用,并讨论了聚簇索引、非聚簇索引、联合索引及最左前缀原则。最后,还介绍了LSM-Tree在高频写入场景下的优势。通过对比多种数据结构,帮助理解不同场景下的索引选择。
92 6
|
2月前
|
SQL 关系型数据库 MySQL
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
123 0
案例剖析:MySQL唯一索引并发插入导致死锁!
|
2月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
64 3
Mysql(4)—数据库索引
|
27天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
149 1
|
2月前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
72 1
|
28天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
63 0
|
2月前
|
监控 关系型数据库 MySQL
MySQL数据表索引命名规范
MySQL数据表索引命名规范
80 1
|
2月前
|
存储 SQL 关系型数据库
mysql中主键索引和联合索引的原理与区别
本文详细介绍了MySQL中的主键索引和联合索引原理及其区别。主键索引按主键值排序,叶节点仅存储数据区,而索引页则存储索引和指向数据域的指针。联合索引由多个字段组成,遵循最左前缀原则,可提高查询效率。文章还探讨了索引扫描原理、索引失效情况及设计原则,并对比了InnoDB与MyISAM存储引擎中聚簇索引和非聚簇索引的特点。对于优化MySQL性能具有参考价值。