PgSQL · 最佳实践 · CPU满问题处理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

前言

在数据库运维当中,一个DBA比较常遇到又比较紧急的问题,就是突发的CPU满(CPU利用率达到100%),导致业务停滞。DBA不一定非常熟悉业务实现逻辑,也不能掌控来自应用的变更或负载变化情况。 所以,遇到CPU满,往往只能从后端数据库开始排查,追溯到具体SQL,最终定位到业务层。这里我们总结下这个问题具体的处理方法。

查看连接数变化

CPU利用率到达100%,首先怀疑,是不是业务高峰活跃连接陡增,而数据库预留的资源不足造成的结果。我们需要查看下,问题发生时,活跃的连接数是否比平时多很多。对于RDS for PG,数据库上的连接数变化,可以从控制台的监控信息中看到。而当前活跃的连接数可以直接连接数据库,使用下列查询语句得到:

select count( * ) from pg_stat_activity where state not like '%idle'; 

追踪慢SQL

如果活跃连接数的变化处于正常范围,则很大概率可能是当时有性能很差的SQL被大量执行导致。由于RDS有慢SQL日志,我们可以通过这个日志,定位到当时比较耗时的SQL来进一步做分析。但通常问题发生时,整个系统都处于停滞状态,所有SQL都慢下来,当时记录的慢SQL可能非常多,并不容易排查罪魁祸首。这里我们介绍几种在问题发生时,即介入追查慢SQL的方法。

1. 第一种方法是使用pg_stat_statements插件定位慢SQL,步骤如下。

1.1. 如果没有创建这个插件,需要手动创建。我们要利用插件和数据库系统里面的计数信息(如SQL执行时间累积等),而这些信息是不断累积的,包含了历史信息。为了更方便的排查当前的CPU满问题,我们要先重置计数器。

create extension pg_stat_statements; select pg_stat_reset(); select pg_stat_statements_reset(); 

1.2. 等待一段时间(例如1分钟),使计数器积累足够的信息。

1.3. 查询最耗时的SQL(一般就是导致问题的直接原因)。

select * from pg_stat_statements order by total_time desc limit 5; 

1.4. 查询读取Buffer次数最多的SQL,这些SQL可能由于所查询的数据没有索引,而导致了过多的Buffer读,也同时大量消耗了CPU。

select * from pg_stat_statements order by shared_blks_hit+shared_blks_read desc limit 5;

2. 第二种方法是,直接通过pg_stat_activity视图,利用下面的查询,查看当前长时间执行,一直不结束的SQL。这些SQL对应造成CPU满,也有直接嫌疑。

 select datname, usename, client_addr, application_name, state, backend_start, xact_start, xact_stay,
 query_start, query_stay, replace(query, chr(10), ' ') as query from (select pgsa.datname as datname,
 pgsa.usename as usename, pgsa.client_addr client_addr, pgsa.application_name as application_name, 
pgsa.state as state, pgsa.backend_start as backend_start, pgsa.xact_start as xact_start, 
extract(epoch from (now() - pgsa.xact_start)) as xact_stay, pgsa.query_start as query_start, 
extract(epoch from (now() - pgsa.query_start)) as query_stay , pgsa.query as query from pg_stat_activity 
as pgsa where pgsa.state != 'idle' and pgsa.state != 'idle in transaction' and pgsa.state != 'idle in transaction (aborted)') idleconnections order by query_stay desc limit 5; 

3. 第3种方法,是从数据表上表扫描(Table Scan)的信息开始查起,查找缺失索引的表。数据表如果缺失索引,大部分热数据又都在内存时(例如内存8G,热数据6G),此时数据库只能使用表扫描,并需要处理已在内存中的大量的无关记录,而耗费大量CPU。特别是对于表记录数超100的表,一次表扫描占用大量CPU(基本把一个CPU占满),多个连接并发(例如上百连接),把所有CPU占满。

3.1. 通过下面的查询,查出使用表扫描最多的表:

select * from pg_stat_user_tables where n_live_tup > 100000 and seq_scan > 0 order by seq_tup_read desc limit 10; 

3.2. 查询当前正在运行的访问到上述表的慢查询:

select * from pg_stat_activity where query ilike '%<table name>%' and query_start - now() > interval '10 seconds'; 

3.3. 也可以通过pg_stat_statements插件定位涉及到这些表的查询:

select * from pg_stat_statements where query ilike '%<table>%'order by shared_blks_hit+shared_blks_read desc limit 3; 

处理慢SQL

对于上面的方法查出来的慢SQL,首先需要做的可能是Cancel或Kill掉他们,使业务先恢复:

select pg_cancel_backend(pid) from pg_stat_activity where query like '%<query text>%' 
and pid != pg_backend_pid(); select pg_terminate_backend(pid) from pg_stat_activity where query like '%<query text>%' and pid != pg_backend_pid(); 

如果这些SQL确实是业务上必需的,则需要对他们做优化。这方面有“三板斧”:

1. 对查询涉及的表,执行ANALYZE <table>或VACUUM ANZLYZE <table>,更新表的统计信息,使查询计划更准确。注意,为避免对业务影响,最好在业务低峰执行。

2. 执行explain 或explain (buffers true, analyze true, verbose true) 命令,查看SQL的执行计划(注意,前者不会实际执行SQL,后者会实际执行而且能得到详细的执行信息),对其中的Table Scan涉及的表,建立索引。

3. 重新编写SQL,去除掉不必要的子查询、改写UNION ALL、使用JOIN CLAUSE固定连接顺序等到,都是进一步深度优化SQL的手段,这里不再深入说明。

总结

需要说明的是,这些方法对于RDS for PPAS产品同样适用,但在使用我们所列的命令时,由于权限限制,需要把上面提到的视图、函数、命令做如下转换:

pg_stat_statements_reset() => rds_pg_stat_statements_reset()

pg_stat_statements => rds_pg_stat_statements()

pg_stat_reset() => rds_pg_stat_reset()

pg_cancel_backend() => rds_pg_cancel_backend()

pg_terminate_backend() => rds_pg_terminate_backend()

pg_stat_activity => rds_pg_stat_activity()

create extension pg_stat_statements => rds_manage_extension('create', 'pg_stat_statements')

上面我们分析了处理CPU满,追查问题SQL的一些方法。大家可以按部就班的尝试我们列出的命令,定位问题。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
Kubernetes Cloud Native 应用服务中间件
Koordinator 最佳实践系列:精细化 CPU 编排
Koordinator 最佳实践系列:精细化 CPU 编排
|
Java
[最佳实践] Java线程栈分析 - CPU利用率持续升高
使用应用诊断分析平台ATP的Java线程栈分析功能,诊断CPU利用率持续升高问题
354 0
[最佳实践] Java线程栈分析 - CPU利用率持续升高
|
SQL 缓存 NoSQL
【巡检问题分析与最佳实践】PolarDB MySQL CPU高问题
CPU做为数据库资源最核心的资源,是日常最重点需要关注的指标,CPU用满,会导致应用RT增高、业务卡顿,更严重会导致数据库实例hang死发生ha等问题,严重影响日常生产业务。 一般对于CPU的监控需要设定安全水位,超出安全水位要及时处理,否则会引发不可预期的严重后果。
【巡检问题分析与最佳实践】PolarDB MySQL CPU高问题
|
SQL 监控 NoSQL
【巡检问题分析与最佳实践】Redis CPU高问题
默认情况下,社区版Redis使用单线程模型处理读写请求,这使得CPU的使用率显得尤为重要。当实例的CPU打满时会导致数据库响应缓慢,严重影响线上业务。
【巡检问题分析与最佳实践】Redis CPU高问题
|
SQL 存储 缓存
【巡检问题分析与最佳实践】RDS SQL Server CPU高问题
CPU使用率过高问题是RDS SQL Server用户遇到的性能问题中较常见的一类。当RDS SQL Server实例的CPU使用率持续较高时,很容易导致数据库访问卡慢的情况,例如一些很简单的查询请求的响应时间也会很久甚至超时失败。
【巡检问题分析与最佳实践】RDS SQL Server CPU高问题
|
SQL 监控 关系型数据库
【巡检问题分析与最佳实践】RDS PostgreSQL CPU高问题
当RDS PostgreSQL实例的CPU使用率持续较高时,很容易导致数据库访问卡慢的情况,例如一些很简单的查询请求的响应时间也会很久甚至超时失败。
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
125 7
|
2月前
|
弹性计算 Kubernetes Perl
k8s 设置pod 的cpu 和内存
在 Kubernetes (k8s) 中,设置 Pod 的 CPU 和内存资源限制和请求是非常重要的,因为这有助于确保集群资源的合理分配和有效利用。你可以通过定义 Pod 的 `resources` 字段来设置这些限制。 以下是一个示例 YAML 文件,展示了如何为一个 Pod 设置 CPU 和内存资源请求(requests)和限制(limits): ```yaml apiVersion: v1 kind: Pod metadata: name: example-pod spec: containers: - name: example-container image:
304 1
|
2月前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
878 2
下一篇
开通oss服务