数据挖掘十大经典算法——EM

简介: 最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。

数据挖掘十大经典算法(5) EM
最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。
在统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
M是一个在已知部分相关变量的情况下,估计未知变量的迭代技术。 EM的算法流程如下:

  1. 初始化分布参数
  2. 重复直到收敛:
  3. E步骤:估计未知参数的期望值,给出当前的参数估计。
  4. M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。
    应用于缺失值

最大期望过程说明
我们用 表示能够观察到的不完整的变量值,用 表示无法观察到的变量值,这样 和 一起组成了完整的数据。 可能是实际测量丢失的数据,也可能是能够简化问题的隐藏变量,如果它的值能够知道的话。例如,在混合模型(Mixture Model)中,如果“产生”样本的混合元素成分已知的话最大似然公式将变得更加便利(参见下面的例子)。
估计无法观测的数据
让 代表矢量 : 定义的参数的全部数据的概率分布(连续情况下)或者概率聚类函数(离散情况下),那么从这个函数就可以得到全部数据的最大似然值

目录
相关文章
|
1月前
|
算法 数据挖掘 Python
【数据挖掘】层次聚类DIANA、AGNES算法讲解及实战应用(图文解释 超详细)
【数据挖掘】层次聚类DIANA、AGNES算法讲解及实战应用(图文解释 超详细)
265 0
|
1月前
|
机器学习/深度学习 算法 前端开发
【数据挖掘】袋装、AdaBoost、随机森林算法的讲解及分类实战(超详细 附源码)
【数据挖掘】袋装、AdaBoost、随机森林算法的讲解及分类实战(超详细 附源码)
58 0
|
1月前
|
数据可视化 算法 JavaScript
【Python数据挖掘】数据可视化及数据对象的相似性度量算法详解(超详细 附源码)
【Python数据挖掘】数据可视化及数据对象的相似性度量算法详解(超详细 附源码)
117 0
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】决策树归纳中ID3算法讲解及构建决策树实战(图文解释 超详细)
【数据挖掘】决策树归纳中ID3算法讲解及构建决策树实战(图文解释 超详细)
417 0
|
1月前
|
算法 数据挖掘 数据库
【数据挖掘】频繁项集挖掘方法中Apriori、FP-Growth算法详解(图文解释 超详细)
【数据挖掘】频繁项集挖掘方法中Apriori、FP-Growth算法详解(图文解释 超详细)
198 0
|
1月前
|
数据采集 存储 算法
数据分享|Weka数据挖掘Apriori关联规则算法分析用户网购数据
数据分享|Weka数据挖掘Apriori关联规则算法分析用户网购数据
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
数据分享|SAS数据挖掘EM贷款违约预测分析:逐步Logistic逻辑回归、决策树、随机森林
数据分享|SAS数据挖掘EM贷款违约预测分析:逐步Logistic逻辑回归、决策树、随机森林
|
1月前
|
算法 数据挖掘 大数据
探索数据挖掘中的特征选择算法
在数据挖掘领域,特征选择是一项至关重要的任务。本文将深入探讨几种常用的特征选择算法,并比较它们在不同数据集上的表现,旨在帮助数据分析师和研究人员更好地应用这些算法来提升模型性能。
|
1月前
|
数据采集 算法 搜索推荐
数据挖掘实战:基于KMeans算法对超市客户进行聚类分群
数据挖掘实战:基于KMeans算法对超市客户进行聚类分群
360 0
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】K-Means、K-Means++、ISODATA算法详解及实战(图文解释 附源码)
【数据挖掘】K-Means、K-Means++、ISODATA算法详解及实战(图文解释 附源码)
150 1

热门文章

最新文章