用GAN还原语义标注图!还能手动改细节(附论文、代码)

简介:
输入一张语义地图——

df2d882396c6e6b129f63026c42dfcf581767578

就能为你还原整个世界:

004e7ba17a9b0e9a01b7ddb931137484c5797374

输入一张亲妈都认不出来的语义标注图——

d530cb2bdf89d3331f34e19b485aa94ea1067bc5

为你合成一张真实的人脸。

0e478c5af3702121039c58636cc6de7570f8f1aa

聪明的你可能已经发现,这个名为pix2pixHD的神奇算法,可以用条件生成式对抗网络(conditional GAN),将一张语义标注的图像还原成现实世界的样子。pix2pixHD合成的图像分辨率可高达2048x1024,和CRN、pix2pix等其他图像合成工具相比可以发现,pix2pixHD的效果显然领先了好几条街!

ea67f92acea07b70d2639bb3e314651eae338038

△ pix2pixHD与pix2pix、CRN对比图

有趣的是,连李飞飞高徒、现特斯拉人工智能与自动驾驶视觉部门主管Andrej Karpathy也在Twitter上大呼“非常鹅妹子嘤!”

6d8af66ab0fed0dfc01752433918ff7d07b879a1

到底是怎么一回事?上车,我们前去看看论文。

效果惊人

有一个官方演示视频——

237437b49635eee3b1b7c62d407d0fa4cbcb4823

pix2pixHD具有通过语义标注的图像还原到现实世界的能力,并且还能根据需要轻松修改和搭配图像。在视频中可以看到,你可以一键更换车辆的颜色和型号,改变街道的类型,甚至还可以移除图像内景物甚至增加图像中的树木。

一张语义地图背后,是丰富的现实世界。

00a5f4b4a23271e0761c9dd3de081bec649cb0c1

pix2pixHD不仅可以将街景语义图转化为真实图像,还能合成人脸。

和街景类似,根据语义标注的人脸图像,我们可以选择组合人物的眼睛、眉毛和胡须等五官特征,还能在标注图上调整五官的大小。

b473415702c95c7e0226cb52ec792a7a9e5cde9d

无论是在街景中增加和减少物体,还是改变人脸的五官,都是通过一个可编辑的界面完成的。这个界面神似众多穿衣搭配的Falsh小游戏的界面,实现了“一键换车”和“一键换眼”,长胡子、改肤色,也都是点一下鼠标的事。

1d1287ec472f30a4c8b6f67932db256c995cfe2c

只能搞定256×256的pix2pix,怎么就变成这个“鹅妹子嘤”pix2pixHD呢?我们来看看技术细节。

网络架构

要生成高分辨率图片,直接用pix2pix的架构是肯定不行的。作者们在论文中说,他们试过了,训练不稳定,生成图片的质量也不如人意。

还是得在它的基础上,进行改造。

aea5d748e0a34aad96bc6ccc481c7df36390ec97

于是,他们在pix2pix的基础上,增加了一个“从糙到精生成器(coarse-to-
fine generator)”、一个多尺度鉴别器架构和一个健壮的对抗学习目标函数。

从糙到精生成器

生成器包含G1和G2两个子网络,G1是全局生成网络,G2是局部增强网络。两个子网络结合起来使用,结构如下图所示:

43a47b30ac8eff6f5454bfead8d197d2c6f100e8

其中G1计算的分辨率是1024×512,而G2将输出图像的分辨率扩大到4倍,也就是横向纵向分别乘以2,2048×1024。如果想生成分辨率更高的图片,可以再加一个同样的局部增强网络,输出4096×2048的图。

在训练这个生成器时,先训练全局生成器,然后训练局部增强器,然后整体微调所有网络的参数。

多尺度鉴别器

高分辨率图片不仅生成起来难,让计算机鉴别真假也难。

要鉴别高分辨率图像是真实的还是合成的,就需要一个感受野很大的鉴别器,也就是说,要么用很深的网络,要么用很大的卷积核。这两种方法都会增加网络容量,导致容易过拟合,训练时也都会占用更多内存。

跟生成器抢内存?不行不行。于是这篇论文的作者们提出了一种新思路:多尺度鉴别器,也就是用3个鉴别器,来鉴别不同分辨率图片的真假。

5a1f1d2a31811a053f036948ea1a3f486720781e

如上图所示,这三个鉴别器D1、D2和D3有着相同的网络结构,但是在不同尺寸的图像上进行训练。通过对高分辨率图像进行两次降低采样,生成3种大小的图像,然后训练鉴别器D1、D2和D3分别来辨别这3种尺寸图像的真假。

最粗糙尺度上的鉴别器感受野最大,负责让图像全局和谐,最精细尺度的鉴别器负责引导生成器生成出精致的细节。

改良损失函数

在Conditional GAN的目标函数LGAN(G, D)

675e4114cc7cb385225d49f0236b0ddf86320e2f

的基础上,pix2pixHD又基于鉴别器引入了一个特征匹配损失,生成器训练之后所生成的各种尺寸图像越来越自然,损失在也随之稳定。

将鉴别器Dk第i层的特征提取器表示为D(i)k,特征匹配损失函数可以表示如下:

0bc5a72e99f136865c6e103a6de8589c4befc12a

完整的目标函数如下,包含GAN损失和特征匹配损失:

f785edd30b97c241085cf79c06fa7179d119234c



从语义标记图到合成图像

图像生成经常用到语义标记图(semantic lable maps),不过本文作者们认为,实例图(instance map)里最重要信息,并没有包含在语义标记图中。

61c758c01f72108f16a3b5b898868bb8e553528b

比如说上图a里,所有汽车连成一体,无法分开,这就需要先计算出如上图b所示的实例边界图(instance boundary map)。

用了实例边界图,生成的图像就不会出现下图a中两辆汽车细节不清楚的情况了。

253531e9b395ae8957a8ab1b6718862f499e30ca

解决了语义标记图自身的缺陷之后,还有一个问题:我们前面所说的图上每个物体都能单独控制,是怎样实现的呢?

在pix2pixHD中,作者们为了生成低维特征,训练了一个编码网络E来寻找和图中每个实例的真实目标相对应的低维向量。另外,还使用了一个标准的编码器-解码器组成的编码架构。

为了确保每个实例内部的特征都协调,作者们在编码器的输出上添加了一个实例级平均池化层,来计算实例的平均特征。然后这个将这个平均特征广播到实例中的所有像素位置上,如下图所示:

51844be34ec98072c3e8fe2ea22a38f99aa8b8b0

广为流传的pix2pix

这个pix2pixHD,从名字到架构,都可以说是pix2pix的升级版。

这篇新论文主要来自英伟达,不过混入了一位加州大学伯克利分校的作者Jun-Yan Zhu,清华CMU伯克利系列学霸、猫奴、也是pix2pix的二作。

他所在的实验室,在图像合成和风格迁移领域贡献了大量论文,还非常良心地都开源了代码。

其中,pix2pix更是流传甚广。比如说不少广为人知的线稿变照片demo,都是基于他们的pix2pix,其中最知名&好玩的,大概要数随手就能画只猫的edges2cats

1d8eaa64bdc9cb9b15b05b8f0f496b6087a86479

画猫的demo大受欢迎,以至于后来被网友们玩出了各种各样的新高度。同样基于pix2pix,画鞋画包画房子的都有,这里有一系列demo,都可以上手试一试:https://affinelayer.com/pixsrv/index.html

如今,有了高清版的pix2pixHD,同样开源了代码,不知道又要玩出什么新花样了。


原文发布时间为:2017-12-9
本文来自云栖社区合作伙伴“ 数据派THU”,了解相关信息可以关注“ 数据派THU”微信公众号
相关文章
|
7月前
|
机器学习/深度学习 数据可视化 PyTorch
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
510 2
|
2月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
348 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
4月前
|
机器学习/深度学习 物联网
只要一张图就能还原绘画过程,这篇论文比爆火的Paints-UNDO实现得更早
【8月更文挑战第23天】近期,由新加坡国立大学等高校联合发布的论文"ProcessPainter: Learn Painting Process from Sequence Data"引起热议。该研究利用机器学习技术探索绘画过程的理解与生成,为艺术教育提供新视角。ProcessPainter采用创新方法,根据文本描述生成逼真绘画过程视频,通过数据驱动方案、绘画LoRA模型及艺术作品复制网络等关键技术实现目标。实验证明其生成结果具有高度艺术性和可控性。尽管面临一些挑战,该成果在绘画教学和数字艺术领域展现出广泛应用潜力。
59 6
|
7月前
|
算法 数据处理 计算机视觉
论文介绍:基于点标注的实例分割
【5月更文挑战第24天】研究人员提出了一种创新的弱监督实例分割方法,通过点标注代替传统的像素级掩模标注,显著降低数据标注成本和时间。点标注方案只需在对象边界框内标注少量点,与Mask R-CNN兼容,实现接近全监督性能。改进的PointRend模块(Implicit PointRend)在点监督下表现出色,简化了模型设计。实验表明,使用10个点标注的Mask R-CNN能达到全监督模型的性能,为实例分割的实际应用开辟了新途径。尽管取得初步成功,但面临处理不同尺度对象和提高泛化能力的挑战。
84 4
|
6月前
|
机器学习/深度学习 监控 算法
傻傻分不清目标检测、语义分割和实例分割,看这篇就够了
傻傻分不清目标检测、语义分割和实例分割,看这篇就够了
429 0
|
6月前
|
机器学习/深度学习 算法 Python
YOLOV5应用实战项目:钢材表面缺陷检测(数据集:NEU-CLS)笔记
YOLOV5应用实战项目:钢材表面缺陷检测(数据集:NEU-CLS)笔记
|
7月前
|
机器学习/深度学习 计算机视觉 网络架构
YOLOv8改进 | 2023主干篇 | 替换LSKNet遥感目标检测主干 (附代码+修改教程+结构讲解)
YOLOv8改进 | 2023主干篇 | 替换LSKNet遥感目标检测主干 (附代码+修改教程+结构讲解)
204 1
YOLOv8改进 | 2023主干篇 | 替换LSKNet遥感目标检测主干 (附代码+修改教程+结构讲解)
|
7月前
|
存储 传感器 编解码
CVPR 2023 最全分割类论文整理:图像/全景/语义/实例分割等【附PDF+代码】
CVPR 2023 最全分割类论文整理:图像/全景/语义/实例分割等【附PDF+代码】
1140 1
|
7月前
|
计算机视觉 网络架构
YOLOv5改进 | 2023主干篇 | 替换LSKNet遥感目标检测主干 (附代码+修改教程+结构讲解)
YOLOv5改进 | 2023主干篇 | 替换LSKNet遥感目标检测主干 (附代码+修改教程+结构讲解)
181 0
|
机器学习/深度学习 PyTorch 算法框架/工具
使用PyTorch构建GAN生成对抗网络源码(详细步骤讲解+注释版)01 手写字体识别
生成对抗网络(GAN)是一种用于生成新的照片,文本或音频的模型。它由两部分组成:生成器和判别器。生成器的作用是生成新的样本,而判别器的作用是识别这些样本是真实的还是假的。两个模型相互博弈,通过不断调整自己的参数来提高自己的能力。生成器希望判别器错误地认为其生成的样本是真实的,而判别器希望能正确地识别生成器生成的样本是假的。最终,生成器会学到如何生成逼真的样本,而判别器会学到如何区分真假样本。