编码

简介: 很多人都把Unicode编码挂在嘴边,其实咱们现实生活中遇到的编码基本都是Unicode的 因为Unicode兼容了大多数老版本的编码规范例如 ASCII Unicode编码定义了这个世界上几乎所有字符(就是你眼睛看到的长那个样子的符号)的数字表示 也就是说Unicode为每个字符发了一张身份证,这张身份证上有一串唯一的数字ID确定了这个字符 在这个纷乱世界上存在的唯一性。
很多人都把Unicode编码挂在嘴边,其实咱们现实生活中遇到的编码基本都是Unicode的
因为Unicode兼容了大多数老版本的编码规范例如  ASCII
Unicode编码定义了这个世界上几乎所有字符(就是你眼睛看到的长那个样子的符号)的数字表示
也就是说Unicode为每个字符发了一张身份证,这张身份证上有一串唯一的数字ID确定了这个字符
在这个纷乱世界上存在的唯一性。Unicode给这串数字ID起了个名字叫 [码点](Code Point)
而很多人说的编码其实是想表达 [Unicode转换格式](即UTF,Unicode Transformation Formats)
有没有觉得眼前一亮豁然开朗?没错 这就是我们看到的UTF-8/UTF-16/UTF-32的前缀来源
这个[Unicode转换格式]的存在是为了解决[码点]在计算机中的二进制表现形式而设计的
毕竟我们的机内表示涉及存储位宽,兼容古老编码格式,码点是数值过大的罕见字符等问题
[码点]经过映射后得到的二进制串的转换格式单位称之为 [码元](Code Unit)。也就是说如果有一种UTF的码点二进制表示有n字节,其码元为8位(1个byte),那么其拥有码元n个。每种UTF的码元都不同,其宽度被作为区分写在了UTF的后缀——这就是UTF-8/UTF-16/UTF-32的由来。UTF-8的码元是8位的,UTF-16的码元是16位的。大部分的编程语言采用16位的码元作为机内表示。这就是我们在各种语言中调用获取一个字符串中character的数量时会出现这么多混乱的原因。事实上我们调用这些方法时取得的不是字符个数,而是 码元个数!一旦我们的字符串中包含了位于基本平面之外的码点,那么就会需要更多的码元来表示,这个时候就会出现测试时常见的困惑——为何return的字符数比实际字符数要多?所以实际写代码时要特别注意这个问题。
采取不同的映射方式可以得到不同格式的二进制串,但是他们背后所表示的[码点]永远是一致的就好像你换身份证但是身份证号不变一样。由于平时人们误把[转换格式]也称为[编码],所以造成今天Unicode/UTF傻傻分不清楚且遣词造句运用混乱的悲桑局面。
Unicode  编码  发展到今天  扩展到了  21  位(从  U+0000    U+10FFFF  )。这一点很重要:  Unicode  不是  16  位的编码,  它是  21  位的。这  21  位提供了  1,114,112  个码点,其中,只有大概  10%  正在使用,所以还有相当大的扩充空间。
编码空间被分成 17 个 平面(plane),每个平面有 65,536 个字符(正好填充2个字节,16位)。0 号平面叫做 「基本多文种平面」(BMP, Basic Multilingual Plane ),涵盖了几乎所有你能遇到的字符,除了 emoji(emoji位于1号平面 - -)。其它平面叫做补充平面,大多是空的。
总结一下各种编码格式的特质:

UTF-32

最清楚明了的一个 UTF 就是  UTF-32 :它在每个码点上使用整 32 位。32 大于 21,因此每一个 UTF-32 值都可以直接表示对应的码点。尽管简单,UTF-32却几乎从来不在实际中使用,因为每个字符占用 4 字节太浪费空间了。


UTF-16 以及「代理对」( Surrogate Pairs )的概念

UTF-16要常见得多,它是根据有 16 位固定长度的码元( code units )定义的。UTF-16 本身是一种长度可变的编码。基本多文种平面(BMP)中的每一个码点都直接与一个码元相映射。鉴于 BMP 几乎囊括了所有常见字符,UTF-16 一般只需要 UTF-32 一半的空间。其它平面里很少使用的码点都是用两个 16 位的码元来编码的,这两个合起来表示一个码点的码元就叫做代理对( surrogate pair )


UTF-8

UTF-8 使用一到四个字节来编码一个码点。从 0 到 127 的这些码点直接映射成 1 个字节(对于只包含这个范围字符的文本来说,这一点使得 UTF-8 和 ASCII 完全相同)。接下来的 1,920 个码点映射成 2 个字节,在 BMP 里所有剩下的码点需要 3 个字节。Unicode 的其他平面里的码点则需要 4 个字节。UTF-8 是基于 8 位的码元的,因此它并不需要关心字节顺序(不过仍有一些程序会在 UTF-8 文件里加上多余的 BOM)。


有效率的空间使用(仅就西方语言来讲),以及不需要操心字节顺序问题使得 UTF-8 成为存储和交流 Unicode 文本方面的最佳编码。它也已经是文件格式、网络协议以及 Web API 领域里 事实上的标准了。
我们的JVM中保存码点是UTF16的转换格式,从char的位宽为16位也可以看得出来。由于绝大部分编码的码点位于基本平面,所以使用16位可以几乎表示所有常用字符。这就是许多语言编译器或运行时都使用UTF16的原因。英文在使用UTF16时也是2字节表示的。当我们想要使用其他平面的字符时,码元超过2个字节,就需要使用代理对在语言中的特定表示方式,譬如‘\U112233’之类的。
使用UTF8时,常用的Alphabet和Numeric都在前127字节,被有效率地用一个字节表示。而我们的中文由于排在1920个码点之后,所以使用3个字节表示,这方面就比UTF16转换格式耗费更多空间。
最后,不论使用哪种UTF转换格式,都是程序员自己可以选择的一种表达方式而已。我们可以通过Java方便的API进行自如转换
相关文章
|
7月前
|
JavaScript 数据安全/隐私保护
41 # 编码的问题
41 # 编码的问题
33 0
|
6月前
|
存储 数据库
编码集的作用是什么?常见的编码集有什么?为什么常用utf-8?
编码集的作用是什么?常见的编码集有什么?为什么常用utf-8?
35 0
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
编码和解码的未来之路
编码和解码的未来之路
|
10月前
|
存储 Java 数据安全/隐私保护
什么是编码和解码
什么是编码和解码
206 0
|
JavaScript
编码
编码
68 0
数制与编码
十进制整数转换为二进制数 可以将十进制数逐次用2除,取余数,一直到商为0.然后把全部余数按相反的次序排列起来。(除二取余)
256 0
数制与编码
|
机器学习/深度学习 算法 索引
关于Onehot编码的总结
关于Onehot编码的总结
536 0
关于Onehot编码的总结
|
Java
编码小结3
java中编码问题
1243 0