Spark技术内幕: Shuffle详解(三)

简介:

前两篇文章写了Shuffle Read的一些实现细节。但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的;本篇开始,将按照Job的执行顺序,来讲解Shuffle。即,结果数据(ShuffleMapTask的结果和ResultTask的结果)是如何产生的;结果是如何处理的;结果是如何读取的。

在Worker上接收Task执行命令的是org.apache.spark.executor.CoarseGrainedExecutorBackend。它在接收到LaunchTask的命令后,通过在Driver创建SparkContext时已经创建的org.apache.spark.executor.Executor的实例的launchTask,启动Task:

  deflaunchTask(
     context: ExecutorBackend, taskId: Long, taskName: String,serializedTask: ByteBuffer) {
   val tr = new TaskRunner(context, taskId, taskName, serializedTask)
   runningTasks.put(taskId, tr)
   threadPool.execute(tr) // 开始在executor中运行
  }

最终Task的执行是在org.apache.spark.executor.Executor.TaskRunner#run。org.apache.spark.executor.ExecutorBackend是Executor与Driver通信的接口,它实际上是一个trait:

private[spark] trait ExecutorBackend {
  defstatusUpdate(taskId: Long, state: TaskState, data: ByteBuffer)
}
 TaskRunner会将Task执行的状态汇报给Driver(org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor)。 而Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。

在Executor运行Task时,得到计算结果会存入org.apache.spark.scheduler.DirectTaskResult。在将结果回传到Driver时,会根据结果的大小有不同的策略:对于“较大”的结果,将其以taskid为key存入org.apache.spark.storage.BlockManager;如果结果不大,那么直接回传给Driver。那么如何判定这个阈值呢?

这里的回传是直接通过akka的消息传递机制。因此这个大小首先不能超过这个机制设置的消息的最大值。这个最大值是通过spark.akka.frameSize设置的,单位是Bytes,默认值是10MB。除此之外,还有200KB的预留空间。因此这个阈值就是conf.getInt("spark.akka.frameSize", 10) * 1024 *1024 – 200KB。

       // directSend = sending directly back to the driver
       val (serializedResult, directSend) = {
         if (resultSize >=akkaFrameSize - AkkaUtils.reservedSizeBytes) { //如果结果太大,那么存入BlockManager
           val blockId = TaskResultBlockId(taskId)
           env.blockManager.putBytes(
              blockId, serializedDirectResult,StorageLevel.MEMORY_AND_DISK_SER)
           (ser.serialize(new IndirectTaskResult[Any](blockId)), false)
         } else { // 如果大小合适,则直接发送结果给Driver
           (serializedDirectResult, true)
         }
       }
       execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)


TaskRunner将Task的执行状态汇报给Driver后,Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。而在这里不同的状态有不同的处理:

1.    如果类型是TaskState.FINISHED,那么调用org.apache.spark.scheduler.TaskResultGetter#enqueueSuccessfulTask进行处理。

2.    如果类型是TaskState.FAILED或者TaskState.KILLED或者TaskState.LOST,调用org.apache.spark.scheduler.TaskResultGetter#enqueueFailedTask进行处理。对于TaskState.LOST,还需要将其所在的Executor标记为failed, 并且根据更新后的Executor重新调度。

 enqueueSuccessfulTask的逻辑也比较简单,就是如果是IndirectTaskResult,那么需要通过blockid来获取结果:sparkEnv.blockManager.getRemoteBytes(blockId);如果是DirectTaskResult,那么结果就无需远程获取了。然后调用

1.    org.apache.spark.scheduler.TaskSchedulerImpl#handleSuccessfulTask

2.    org.apache.spark.scheduler.TaskSetManager#handleSuccessfulTask

3.    org.apache.spark.scheduler.DAGScheduler#taskEnded

4.    org.apache.spark.scheduler.DAGScheduler#eventProcessActor

5.    org.apache.spark.scheduler.DAGScheduler#handleTaskCompletion

进行处理。核心逻辑都在第5个调用栈。如果task是ResultTask,处理逻辑比较简单,停止job,更新一些状态,发送一些event即可。

    if (!job.finished(rt.outputId)){
        job.finished(rt.outputId) =true
        job.numFinished += 1
        // If the whole job hasfinished, remove it
        if (job.numFinished ==job.numPartitions) {
          markStageAsFinished(stage)
         cleanupStateForJobAndIndependentStages(job)
          listenerBus.post(SparkListenerJobEnd(job.jobId,JobSucceeded))
        }
 
        // taskSucceeded runs someuser code that might throw an exception.
        // Make sure we areresilient against that.
        try {
         job.listener.taskSucceeded(rt.outputId, event.result)
        } catch {
          case e: Exception =>
            // TODO: Perhaps we wantto mark the stage as failed?
           job.listener.jobFailed(new SparkDriverExecutionException(e))
        }
    }

如果task是ShuffleMapTask,那么它需要将结果通过某种机制告诉下游的Stage,以便于其可以作为下游Stage的输入。这个机制是怎么实现的?

实际上,对于ShuffleMapTask来说,其结果实际上是org.apache.spark.scheduler.MapStatus;其序列化后存入了DirectTaskResult或者IndirectTaskResult中。而DAGScheduler#handleTaskCompletion通过下面的方式来获取这个结果:

val status =event.result.asInstanceOf[MapStatus]

通过将这个status注册到org.apache.spark.MapOutputTrackerMaster,就实现了

    mapOutputTracker.registerMapOutputs(
                 stage.shuffleDep.get.shuffleId,
                  stage.outputLocs.map(list=> if (list.isEmpty) null else list.head).toArray,
                  changeEpoch = true)


目录
相关文章
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
158 2
|
2月前
|
分布式计算 监控 大数据
如何优化Spark中的shuffle操作?
【10月更文挑战第18天】
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
142 1
|
3月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
109 0
|
3月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
119 0
|
4月前
|
分布式计算 Java Apache
Apache Spark Streaming技术深度解析
【9月更文挑战第4天】Apache Spark Streaming是Apache Spark生态系统中用于处理实时数据流的一个重要组件。它将输入数据分成小批次(micro-batch),然后利用Spark的批处理引擎进行处理,从而结合了批处理和流处理的优点。这种处理方式使得Spark Streaming既能够保持高吞吐量,又能够处理实时数据流。
88 0
|
6月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
180 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
7月前
|
分布式计算 Hadoop 大数据
大数据技术:Hadoop与Spark的对比
【6月更文挑战第15天】**Hadoop与Spark对比摘要** Hadoop是分布式系统基础架构,擅长处理大规模批处理任务,依赖HDFS和MapReduce,具有高可靠性和生态多样性。Spark是快速数据处理引擎,侧重内存计算,提供多语言接口,支持机器学习和流处理,处理速度远超Hadoop,适合实时分析和交互式查询。两者在资源占用和生态系统上有差异,适用于不同应用场景。选择时需依据具体需求。
|
8月前
|
分布式计算 Hadoop 大数据
探索大数据技术:Hadoop与Spark的奥秘之旅
【5月更文挑战第28天】本文探讨了大数据技术中的Hadoop和Spark,Hadoop作为分布式系统基础架构,通过HDFS和MapReduce处理大规模数据,适用于搜索引擎等场景。Spark是快速数据处理引擎,采用内存计算和DAG模型,适用于实时推荐和机器学习。两者各有优势,未来将继续发展和完善,助力大数据时代的发展。
|
7月前
|
机器学习/深度学习 分布式计算 API
技术好文:Spark机器学习笔记一
技术好文:Spark机器学习笔记一
52 0