操作系统进程调度算法(Java 实现)

简介: FCFS(First Come First Server,先来先服务)这是最简单,最基本的算法,它的思想非常简单,就是按照进程到来的时间顺序,逐个分配 CPU 资源 优点:简单,方便 ...

FCFS(First Come First Server,先来先服务)

这是最简单,最基本的算法,它的思想非常简单,就是按照进程到来的时间顺序,逐个分配 CPU 资源
优点:简单,方便
缺点:效率低,资源利用率低

/**
  * CPU 占用情况
  * 1: 空闲
  * 0: 正被占用
  */
 static int CPU = 1;
 /**
  * 等待队列长度
  */
 static final int MAXLEN = 10;

 /**
  * 先来先服务算法
  * @param processes
  */
 public static void FCFS(List<Process> processes){
     int count = processes.size();
     int time = 0;
     int[] waitQueue = new int[MAXLEN];
     int front = 0;int tail = 0;
     int running = 0;
     System.out.println("-------------FCFS算法-------------");
     if (count <= 0){
         System.out.println("无可用进程");
         return;
     }

     while (count > 0){
         System.out.print("第 " + time + " 秒: ");
         for (int i = 0; i < processes.size(); i++){
             if (processes.get(i).isAlive() && processes.get(i).getInTime() == time){
                 System.out.print("进程 " + i + " 到来 ");
                 waitQueue[tail] = i;
                 tail = (tail+1) % MAXLEN;
             }
             if (processes.get(running).isAlive() && processes.get(running).getCount() == 0){
                 System.out.print("进程 " + running + " 结束运行 ");
                 processes.get(running).setAlive(false);
                 processes.get(running).setEndTime(time);
                 count--;
                 CPU = 1;
             }
         }
         if (CPU == 1 && front != tail){
             running = waitQueue[front];
             front = (front+1) % MAXLEN;
             System.out.print("进程 " + running + " 开始运行");
             int temp = processes.get(running).getCount();
             temp--;
             processes.get(running).setCount(temp);
             CPU = 0;
         } else if (CPU == 0){
             int temp = processes.get(running).getCount();
             temp--;
             processes.get(running).setCount(temp);
         }
         time++;
         System.out.println();
     }
     System.out.println("---------------------------------");
     ShowResult(processes);
 }

SJF(Short Job First,短作业优先)

按照进程预计需要的运行时间,按照从小到大分配资源
优点:简单进程执行速度快
缺点:无法准确预估运行时间,容易造成长进程饥饿

/**
 * 短作业优先算法
 * 就是在 FCFS 算法中加入对 waitQueue 等待队列按照运行时间排序
 */

//改变部分
...

for (int i = 0; i < processes.size(); i++){
    if (processes.get(i).isAlive() && processes.get(i).getInTime() == time){
        System.out.print("进程 " + i + " 到来 ");
        waitQueue[tail] = i;
        tail = (tail+1) % MAXLEN;
        length++;
        /**
         * 对等待队列按进程运行时长按从小到大排序
         */
        for (int x=front, z=0; z < length; x=(x+1)%MAXLEN, z++){
            for (int y=x+1, q=0; q < length-x; y=(y+1)%MAXLEN, q++){
                if (processes.get(waitQueue[x]).getCount() > processes.get(waitQueue[y]).getCount()){
                    int t = waitQueue[x];
                    waitQueue[x] = waitQueue[y];
                    waitQueue[y] = t;
                }
            }
        }
    }

...

PSA(优先级调度)

按照进程的优先级选择调度顺序

/**
 * 优先级调度算法
 * 就是将 SJF 算法中的排序,改为按照优先级排序
 */

/**
 * 改变部分
 * 对等待队列按进程优先级按从小到大排序
 */
for (int x=front, z=0; z < length; x=(x+1)%MAXLEN, z++){
    for (int y=x+1, q=0; q < length-x; y=(y+1)%MAXLEN, q++){
        if (processes.get(waitQueue[x]).getPriority() > processes.get(waitQueue[y]).getPriority()){
            int t = waitQueue[x];
            waitQueue[x] = waitQueue[y];
            waitQueue[y] = t;
        }
    }
}

RR (时间片轮转算法)

为 CPU 的执行设定一个时间片大小,每个进程轮询分配时间片,时间片结束后暂停运行加入等待队列

  /**
   * 时间片轮转算法
   * @param processes
   * @param round
   */
  public static void RR(List<Process> processes, int round){
      int count = processes.size();
      int time = 0;
      int[] waitQueue = new int[MAXLEN];
      int front = 0;int tail = 0;
      int running = 0;
      System.out.println("------------- RR 算法-------------");
      if (count <= 0){
          System.out.println("无可用进程");
          return;
      }

      while (count > 0){
          System.out.print("第 " + time + " 秒: ");
          for (int i = 0; i < processes.size(); i++){
              if (processes.get(i).isAlive() && processes.get(i).getInTime() == time){
                  System.out.print("进程 " + i + " 到来 ");
                  waitQueue[tail] = i;
                  tail = (tail+1) % MAXLEN;
              }
              if (processes.get(running).isAlive() && processes.get(running).getCount() == 0){
                  System.out.print("进程 " + running + " 结束运行 ");
                  processes.get(running).setAlive(false);
                  processes.get(running).setEndTime(time);
                  count--;
                  CPU = 1;
              }
          }
          if (CPU == 1 && front != tail){
              running = waitQueue[front];
              front = (front+1) % MAXLEN;
              System.out.print("进程 " + running + " 开始运行");
              int temp = processes.get(running).getCount();
              temp--;
              processes.get(running).setCount(temp);
              CPU = 0;
          } else if (CPU == 0){
              int temp = processes.get(running).getCount();
              temp--;
              processes.get(running).setCount(temp);
              if (time % round == 0){
                  System.out.print("进程 " + running + " 暂停运行");
                  waitQueue[tail] = running;
                  tail = (tail+1) % MAXLEN;
                  CPU = 1;
              }
          }
          time++;
          System.out.println();
      }
      System.out.println("---------------------------------");
      ShowResult(processes);
  }

算法运行结果显示


    /**
     * 输出时间统计结果
     * @param processes
     */
    public static void ShowResult(List<Process> processes){
        int averageTime = 0;
        for (int i = 0; i < processes.size(); i++){
            int inTime = processes.get(i).getInTime();
            int endTime = processes.get(i).getEndTime();
            averageTime += endTime-inTime;
            System.out.println("进程 " + i + " : 到来时间: " +
                    inTime + " 结束时间: " +
                    endTime + " 周转时间: " +
                    (endTime-inTime));
        }
        System.out.println("平均周转时间: " + averageTime / processes.size());
        System.out.println("---------------END--------------");
    }
目录
相关文章
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
192 0
|
8月前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
9月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
264 1
|
9月前
|
调度 开发者 Python
深入浅出操作系统:进程与线程的奥秘
在数字世界的底层,操作系统扮演着不可或缺的角色。它如同一位高效的管家,协调和控制着计算机硬件与软件资源。本文将拨开迷雾,深入探索操作系统中两个核心概念——进程与线程。我们将从它们的诞生谈起,逐步剖析它们的本质、区别以及如何影响我们日常使用的应用程序性能。通过简单的比喻,我们将理解这些看似抽象的概念,并学会如何在编程实践中高效利用进程与线程。准备好跟随我一起,揭开操作系统的神秘面纱,让我们的代码运行得更加流畅吧!
|
5月前
|
缓存 运维 前端开发
|
5月前
|
缓存 运维 前端开发
阿里云操作系统控制台:高效解决性能瓶颈与抖动之进程热点追踪
遇到“进程性能瓶颈导致业务异常”等多项业务痛点时,提供高效解决方案,并展示案例。
|
6月前
|
弹性计算 运维 资源调度
使用阿里云操作系统控制台巧解调度抖动
阿里云操作系统控制台是一站式云服务器管理平台,提供性能监控、故障诊断、日志分析、安全管理和资源调度等功能。用户可实时查看CPU、内存等使用情况,快速定位并解决调度抖动等问题。智能诊断工具自动生成优化建议,简化运维流程,降低技术门槛。尽管部分功能仍在优化中,但整体上显著提升了云服务器管理的效率和稳定性。
145 15
使用阿里云操作系统控制台巧解调度抖动
|
8月前
|
监控 搜索推荐 开发工具
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
663 2
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
|
9月前
|
C语言 开发者 内存技术
探索操作系统核心:从进程管理到内存分配
本文将深入探讨操作系统的两大核心功能——进程管理和内存分配。通过直观的代码示例,我们将了解如何在操作系统中实现这些基本功能,以及它们如何影响系统性能和稳定性。文章旨在为读者提供一个清晰的操作系统内部工作机制视角,同时强调理解和掌握这些概念对于任何软件开发人员的重要性。

推荐镜像

更多