【Python】模块之queue

简介:
  Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。
创建一个 队列 对象 最大长度为10
from Queue import Queue
q = Queue(maxsize = 10)
 
import Queue
q = Queue.Queue(maxsize = 10)
 
python queue模块有三种队列:
1、python queue模块的FIFO队列先进先出。其构造函数
   class Queue.Queue(maxsize)  
2、LIFO类似于堆。即先进后出。其构造函数
   class Queue.LifoQueue(maxsize)   
3、还有一种是优先级队列级别越低越先出来。其构造函数 
   class Queue.PriorityQueue(maxsize)   

Queue的常用方法:
   Queue.qsize() #返回队列的大小 
   Queue.empty() #如果队列为空,返回True,反之False 
   Queue.full()  #如果队列满了,返回True,反之False
   Queue.full 与 maxsize 大小对应 
   Queue.get([block[, timeout]]) #获取队列,timeout等待时间,调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。 
   Queue.get_nowait() #相当Queue.get(False)
   Queue.put(item)    #非阻塞写入队列,timeout等待时间,调用队列对象的put()方法在队尾插入一个项目。
   put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。
   Queue.put_nowait(item) #相当Queue.put(item, False)
   Queue.task_done()   #在完成一项工作之后,Queue.task_done() 函数向任务已经完成的队列发送一个信号Queue.join() 实际上意味着等到队列为空,再执行别的操作.

如下代码实现了比较经典的生产者和消费者模型:
from Queue import Queue
import random
import threading
import time

#Producer thread
class Producer(threading.Thread):
    def __init__(self, t_name, queue):
        threading.Thread.__init__(self, name=t_name)
        self.data=queue
    def run(self):
        for i in range(5):
            print "%s: %s is producing %d to the queue!" %(time.ctime(), self.getName(), i)
            self.data.put(i)
            time.sleep(random.randrange(10)/5)
        print "%s: %s finished!" %(time.ctime(), self.getName())

#Consumer thread
class Consumer(threading.Thread):
    def __init__(self, t_name, queue):
        threading.Thread.__init__(self, name=t_name)
        self.data=queue
    def run(self):
        for i in range(5):
            val = self.data.get()
            print "%s: %s is consuming. %d in the queue is consumed!" %(time.ctime(), self.getName(), val)
            time.sleep(random.randrange(10))
        print "%s: %s finished!" %(time.ctime(), self.getName())

#Main thread
def main():
    queue = Queue()
    producer = Producer('Pro.', queue)
    consumer = Consumer('Con.', queue)
    producer.start()
    consumer.start()
    producer.join()
    consumer.join()
    print 'All threads terminate!'
 
if __name__ == '__main__':
    main()

程序输出
[root@rac1 python]# python prdcust.py   
start consumer
start producer
producing...1
producing...2
producing...3
producing...4
producing...5
5
consuming...4
consuming...3
consuming...2
consuming...1
consuming...0
0
0
相关文章
|
29天前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
250 7
|
1月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
207 0
|
1月前
|
JSON 算法 API
Python中的json模块:从基础到进阶的实用指南
本文深入解析Python内置json模块的使用,涵盖序列化与反序列化核心函数、参数配置、中文处理、自定义对象转换及异常处理,并介绍性能优化与第三方库扩展,助你高效实现JSON数据交互。(238字)
278 4
|
30天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
211 0
|
1月前
|
XML JSON 数据处理
超越JSON:Python结构化数据处理模块全解析
本文深入解析Python中12个核心数据处理模块,涵盖csv、pandas、pickle、shelve、struct、configparser、xml、numpy、array、sqlite3和msgpack,覆盖表格处理、序列化、配置管理、科学计算等六大场景,结合真实案例与决策树,助你高效应对各类数据挑战。(238字)
156 0
|
2月前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
114 4
|
2月前
|
存储 数据库 开发者
Python SQLite模块:轻量级数据库的实战指南
本文深入讲解Python内置sqlite3模块的实战应用,涵盖数据库连接、CRUD操作、事务管理、性能优化及高级特性,结合完整案例,助你快速掌握SQLite在小型项目中的高效使用,是Python开发者必备的轻量级数据库指南。
260 0
|
12月前
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
362 62
|
3月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
306 0
|
4月前
|
数据安全/隐私保护 Python
抖音私信脚本app,协议私信群发工具,抖音python私信模块
这个实现包含三个主要模块:抖音私信核心功能类、辅助工具类和主程序入口。核心功能包括登录

推荐镜像

更多